M212305EN-B

Intrinsically Safe Humidity and Temperature Transmitter Series

HMT370EX

PUBLISHED BY

Vaisala Oyj Vanha Nurmijärventie 21, FI-01670 Vantaa, Finland P.O. Box 26, FI-00421 Helsinki, Finland +358 9 8949 1

Visit our Internet pages at www.vaisala.com.

© Vaisala 2022

No part of this document may be reproduced, published or publicly displayed in any form or by any means, electronic or mechanical (including photocopying), nor may its contents be modified, translated, adapted, sold or disclosed to a third party without prior written permission of the copyright holder. Translated documents and translated portions of multilingual documents are based on the original English versions. In ambiguous cases, the English versions are applicable, not the translations.

The contents of this document are subject to change without prior notice.

Local rules and regulations may vary and they shall take precedence over the information contained in this document. Vaisala makes no representations on this document's compliance with the local rules and regulations applicable at any given time, and hereby disclaims any and all responsibilities related thereto.

This document does not create any legally binding obligations for Vaisala towards customers or end users. All legally binding obligations and agreements are included exclusively in the applicable supply contract or the General Conditions of Sale and General Conditions of Service of Vaisala.

This product contains software developed by Vaisala or third parties. Use of the software is governed by license terms and conditions included in the applicable supply contract or, in the absence of separate license terms and conditions, by the General License Conditions of Vaisala Group.

Table of contents

1.	About this document	9
1.1	Version information	9
1.2	Related manuals	9
1.3	Documentation conventions	10
1.4	Trademarks	10
~	Due duet evenuieur	11
Z.	Product overview	11
2.1	Decis features and entires	
2.2	Basic features and options	11
2.5	Hazardous area sarety	
2.4	Available measurement parameters	12
2.5	Display options	14
2.5.1	LED states in transmitter with no display	14
2.6	Connectivity to Vaisala Insight software	15
2.7	Transmitter parts	16
2.7.1	Cable gland and conduit options	17
3	HMT370EX regional safety certification information	19
3.1	Regional safety certification overview	19
32	ATEX/IECEx safety certification information	20
3 2 1	Using HMT370EX Series transmitters in bazardous locations	20
3.2.1	Guidelines for safe use in hazardous conditions	20
7 7	lanan safety certification information	26
J.J 7 7 1	Lising HMT370EX Sories transmitters in bazardous locations	20
2 2 2	Guidelines for safe use in bazardous conditions	20 28
3.J.Z	China safety cortification information	20 72
J.4 Z / 1	Using HMT770EX Series transmitters in bazardous locations	JZ
J.4.1	Guidelines for cafe use in bazardous conditions	JZ
J.4.2 7 5	Korea safety cortification information	34 zo
J.J 7 E 1	Lising HMTZZOEV Series transmitters in hazardous locations	30
J.J.I 7 E 0	Cuidelines for safe use in bazardous conditions	
3.5.2	US (EM) safety cortification information	40
J.U 7 C 1	Using HMT770EV Series transmitters in hazardous locations	43
3.0.1	Cuidelines for sefe use in bezerdeus conditions	43
3.0.2	Guidelines for sale use in Indzardous conditions	45
3./ 7 71	US/CAN (MET) Salety certification information	50
5.7.1	Osing HM1370EX Series transmitters in hazardous locations	50
3.7.2	Guidelines for safe use in hazardous conditions	52
3.8	UK (UKEX) safety certification information	55
3.8.1	Using HM13/0EX Series transmitters in hazardous locations	55
3.8.2	Guidelines for safe use in hazardous conditions	57
4.	Probe options	61
4.1	HMT370EX probe options overview	61
4.1.1	HMT370EX probe accessories	
4.2	Temperature only probe option (HMP371 and HMP373).	
4.3	HMP371 fixed probe	
· ·	· · · · · · · · · · · · · · · · · · ·	

4.4	HMP373 probe for confined spaces	64
4.5	HMP374 probe for high pressure applications	65
4.5.1	Attaching HMP374 to process	67
4.6	HMP375 probe for high temperature applications	69
4.7	HMP377 probe for high humidity applications	70
4.8	HMP378 probe for pressurized pipelines	71
4.8.1	Attaching HMP378 to process with fitting body	73
4.8.2	Attaching ball valve kit to process	75
4.8.3	Installing HMP378 with ball valve kit BALLVALVE-1	77
4.8.4	HMP378F probe option for measuring oil moisture and	
	temperature	79
4.8.5	HMP378H probe option for measuring JET A-1 fuel	
	moisture and temperature	79
5 1	nstallation	81
51	HMT370EX installation overview	01
511	Installation proparations	01 22
512	Drobe installation overview	20 22
517	HMT370EX transmitter dimensions	05 gz
52	Mounting	8/
5.Z	Attaching cable glands and conduit fittings	04 25
5.4	Wiring	88
5.41	Wiring with galvanic isolators	88
542	Wiring with Zener barriers	89
55	Finalizing installation: closing transmitter and attaching grounding	90
5.6	Optional: testing analog output level with a multimeter	91
0.0		
6. ⊦	IMT370 local display interface	94
6.1	Local display overview	94
6.1.1	Local display PIN code	96
6.1.2	Light and dark display themes	97
6.1.3	Sleep mode	97
6.2	HMT370EX display main menu	98
6.3	Settings menu	98
6.3.1	Display menu	99
6.3.2	Analog outputs menu	100
6.3.3	Measurement settings menu	.100
6.4	Calibration menu	101
6.5	Status menu	101
6.6	Maintenance menu	102
7 0	Derating with Insight BC software	103
71 C	Vaisala Insight PC software	103
711	Basic and Advanced user modes	107
72	Connecting to Insight PC software	107
7.21	Installing driver for the USB service cable	.105
7.3	Insight main view with transmitter	. 107
7.4	Insight main view with probe	108
	J	

8.	Analog output configuration	109
8.1	Analog output configuration overview	109
8.2	Configuring analog outputs with Insight	110
8.3	Configuring analog outputs with local display interface	110
8.4	Analog output level test	
8.4.1	Testing analog output level with local display interface	111
8.4.2	Testing analog output level with Insight	
9.	Environmental compensation and measurement settings	114
9.1	Environmental compensation and measurement settings overvie	w 114
9.2	Configuring pressure compensation	115
9.3	Configuring filtering factor	116
9.4	Configuring calculation coefficients	117
9.4.1	HMP378F calculation model with average oil coefficients	117
9.4.2	HMP378F calculation model with oil-specific coefficients	118
10.	Calibration and adjustment	119
10.1	Calibration and adjustment overview	
10.2	Adjusting measurements with Insight	120
10.3	Adjusting measurements with HMT370EX local display interface.	
10.4	Analog output adjustment overview	
10.4.	Adjusting analog output level with Insight	
10.4.	2 Adjusting analog output level with local display interface	
11	Maintonanaa	120
11.	Maintenance	126
11.1	Overview	126
11.0	Cleaning	126
11.Z	Cleanning probe filter	120
11.5	Changing probe lilter	126
12	Troubleshooting	128
121	Problems and their possible solutions	128
12.2	From messages	130
12.2	Restoring factory default settings	131
12.5	Restoring factory actual settings	
13.	Technical data	
13.1	Specifications	132
13.2	HMP371 specifications	
13.3	HMP373 specifications	
13.4	HMP374 specifications	138
13.5	HMP375 specifications	138
13.6	HMP377 specifications	
13.7	HMP378 specifications	
13.8	Spare parts and accessories	
13.9	Recycling instructions	
Maint	enance and calibration services	147
Warra	nty	147

Technical support	147
Recycling	

List of figures

Figure	1	HMT370EX transmitter display options	14
Figure	2	HMT370EX transmitter external parts	16
Figure	3	HMT370EX transmitter internal parts	17
Figure	4	Default plugs in HMT370EX lead-throughs	18
Figure	5	HMT370EX parts overview	22
Figure	6	Location of test points and service port	25
Figure	7	HMT370EX parts overview	28
Figure	8	Location of test points and service port	31
Figure	9	HMT370EX parts overview	34
Figure	10	Location of test points and service port	37
Figure	11	HMT370EX parts overview	40
Figure	12	Location of test points and service port	42
Figure	13	HMT370EX parts overview	45
Figure	14	Location of test points and service port	48
Figure	15	FM Approved wiring diagram for intrinsically safe operation	49
Figure	16	HMT370EX parts overview	52
Figure	17	Location of test points and service port	54
Figure	18	HMT370EX parts overview	57
Figure	19	Location of test points and service port	60
Figure	20	HMT370EX probe options	61
Figure	21	Location of configuration code on product label	63
Figure	22	Dimensions in mm (inches)	63
Figure	23	Dimensions in mm (inches)	64
Figure	24	Left: Installation kit for duct mounting. Right:	
		Installation flange. Aluminum or stainless steel	65
Figure	25	Dimensions in mm (inches)	66
Figure	26	HMP374 fitting body and clasp nut	67
Figure	27	HMP375 probe and stainless steel installation flange.	
		Dimensions in mm (inches)	69
Figure	28	Dimensions in mm (inches)	70
Figure	29	Dimensions in mm (inches)	72
Figure	30	HMP378 fitting body and clasp nut	73
Figure	31	Inserting HMP378 into process with ball valve kit	77
Figure	32	Example wall installation with HMP373 probe	81
Figure	33	Duct installation example with HMP373 probe and duct	
		installation kit	83
Figure	34	HMT370EX transmitter dimensions	83
Figure	35	Mounting HMT370EX directly through the transmitter body	84
Figure	36	Wiring example using one cable	87
Figure	37	Wiring diagram with galvanic isolators	88
Figure	38	Wiring diagram with Zener barriers	
Figure	39	Multimeter test point overview	92
Figure	40	HMT370EX local display examples: measurement graph	
		view and main menu screen	94
Figure	41	HMI3/UEX display interface buttons	94

Figure 42	2 parameter view example	95
Figure 43	Graph view example	95
Figure 44	Parameter list view example	96
Figure 45	Display PIN code button presses	96
Figure 46	Dark (left) and light (right) display theme examples	97
Figure 47	Transmitter display in sleep mode	97
Figure 48	HMT370EX display interface main menu	98
Figure 49	Settings menu	98
Figure 50	Display menu	99
Figure 51	Analog output settings	100
Figure 52	Calibration menu	101
Figure 53	Status menu	101
Figure 54	Maintenance menu	102
Figure 55	Connecting to Insight: probe body and transmitter	
	service port locations	104
Figure 56	Insight main menu and settings: transmitter view	107
Figure 57	Insight main menu and settings: probe view	108
Figure 58	Analog output configuration options in Insight PC software	109
Figure 59	Multimeter test point overview	111
Figure 60	Filtering factor configuration in Insight PC software	116
Figure 61	Insight PC software calibration view example	119
Figure 62	Local display calibration menu	119
Figure 63	Analog output level adjustment in Insight PC software	124
Figure 64	Humidity measurement accuracy as function of temperature	133
Figure 65	Temperature measurement accuracy over full range	133
Figure 66	A _w measurement accuracy	134
Figure 67	HMT370EX transmitter dimensions	136
Figure 68	Dimensions in mm (inches)	137
Figure 69	Dimensions in mm (inches)	137
Figure 70	Dimensions in mm (inches)	138
Figure 71	HMP375 probe and stainless steel installation flange.	
	Dimensions in mm (inches)	139
Figure 72	Dimensions in mm (inches)	140
Figure 73	Dimensions in mm (inches)	141
Figure 74	Recyclable and non-recyclable parts in transmitters	
	with no display	143
Figure 75	Recyclable and non-recyclable parts in transmitters	
	with no display after disposing of electronics and probe	143
Figure 76	Recyclable and non-recyclable parts in transmitters with display	y143
Figure 77	Recyclable and non-recyclable parts in transmitters	
	with display after disposing of electrical and electronic waste	143

List of tables

Table	1	Document versions (English)	9
Table	2	Related manuals	9
Table	3	Available measurement parameters for HMP371,	
		HMP373, HMP374, HMP375, HMP377, and HMP378	12
Table	4	Available measurement parameters for HMP378F and HMP378H	12
Table	5	LED status indicator states	15
Table	6	Cable lead-through accessories	18
Table	7	HMT370EX Series regional Ex classifications	19
Table	8	HMT370EX series hazardous area classifications	21
Table	9	Allowed ambient temperature ranges	. 23
Table	10	Intrinsically safe input parameters	24
Table	11	HMT370EX Series hazardous area classifications	27
Table	12	Allowed ambient temperature ranges	.29
Table	13	Intrinsically safe input parameters	30
Table	14	HMT370EX series hazardous area classifications	. 33
Table	15	Allowed ambient temperature ranges	.34
Table	16	Intrinsically safe input parameters	36
Table	17	HMT370EX series hazardous area classifications	. 39
Table	18	Allowed ambient temperature ranges	.40
Table	19	Intrinsically safe input parameters	42
Table	20	HMT370EX series hazardous area classifications	.44
Table	21	Allowed ambient temperature ranges	.46
Table	22	Intrinsically safe input parameters	47
Table	23	HMT370EX series hazardous area classifications	51
Table	24	Allowed ambient temperature ranges	. 52
Table	25	Intrinsically safe input parameters	54
Table	26	HMT370EX series hazardous area classifications	. 56
Table	27	Allowed ambient temperature ranges	. 58
Table	28	Intrinsically safe input parameters	59
Table	29	HMT370EX probe accessories	62
Table	30	HMP371 for wall mounting	. 64
Table	31	HMP373 for confined spaces	.64
Table	32	HMP374 for high pressure	. 66
Table	33	HMP375 for high temperature	.69
Table	34	HMP377 for high humidities	70
Table	35	HMP378 for pressurized pipelines	. 72
Table	36	HMP378F measurement parameters	79
Table	37	HMP378H measurement parameters	.80
Table	38	Measurement performance	.132
Table	39	HUMICAP® 180L2 measurement performance	133
Table	40	HMP378F and HMP378H ppm accuracy	134
Table	41	Operating environment	135
Table	42	Compliance	135
Table	43	Inputs and outputs	135
Table	44	Mechanical specifications	135

Table 45	HMP371 for wall mounting	
Table 46	HMP373 for confined spaces	
Table 47	HMP374 for high pressure	
Table 48	HMP375 for high temperature	
Table 49	HMP377 for high humidities	
Table 50	HMP378 for pressurized pipelines	
Table 51	Accessory availability	141

1. About this document

1.1 Version information

Table 1 Document versions (English)

Document code	Date	Description
M212305EN-B	February 2022	 This manual. Added information on regional safety certifications (ATEX/IECEx/CML/NEPSI/KCs/FM/MET/UKEX): see Regional safety certification overview (page 19). Updated the oil and fuel type compatibility information for the HMP378F and HMP378H probe variants: see HMP378F probe option for measuring oil moisture and temperature (page 79) and HMP378H probe option for measuring JET A-1 fuel moisture and temperature (page 79). Updated Specifications (page 132) with information on the ppm measurement accuracy of HMP378F and HMP378H. Mounting accessories added to Spare parts and accessories (page 141). HMP374 probe for high pressure applications (page 65) and HMP378 probe for pressurized pipelines (page 71) installation instructions for fitting body and ball valve updated. Temperature only probe option for HMP371 and HMP373 added: see Temperature only probe option (HMP371 and HMP373) (page 63). Various minor corrections and improvements.
M212305EN-A	March 2021	First version of the document.

1.2 Related manuals

Table 2 Related manuals

Document code	Description
M212306EN	HMT370EX Multilingual Installation and Safety Guide (languages: English, German, French, Dutch, Spanish, Portuguese, Italian, Hungarian, Czech, Polish, Finnish, Estonian, Swedish, Norwegian, Danish)
M212662EN	HMT370EX Multilingual Installation and Safety Guide (languages: English and Japanese)

Document code	Description
M212704EN	HMT370EX Multilingual Installation and Safety Guide (languages: English and Chinese)
M212717EN	HMT370EX Multilingual Installation and Safety Guide (languages: English and Korean)
M212733EN	HMT370EX Installation and Safety Guide (language: English, for US FM certification).
M212707EN	HMT370EX Installation and Safety Guide (language: English, for US/CAN MET certification).
M212752EN	HMT370EX Installation and Safety Guide (language: English, for UK/ UKEX certification).

1.3 Documentation conventions

WARNING! Warning alerts you to a serious hazard. If you do not read and follow instructions carefully at this point, there is a risk of injury or even death.

CAUTION! Caution warns you of a potential hazard. If you do not read and follow instructions carefully at this point, the product could be damaged or important data could be lost.

Note highlights important information on using the product.

1.4 Trademarks

Vaisala® and HUMICAP® are registered trademarks of Vaisala Oyj.

All other product or company names that may be mentioned in this publication are trade names, trademarks, or registered trademarks of their respective owners.

2. Product overview

2.1 Introduction to HMT370EX series

Vaisala HUMICAP* Humidity and Temperature Transmitter Series HMT370EX is the ideal solution for measuring humidity in hazardous areas. Intrinsically safe and robust, HMT370EX operates safely and reliably even in the most hazardous areas, such as Zone 0. HMT370EX transmitters can be used as a replacement for the long-running HMT360 transmitter series in all HMT360 applications.

HMT370EX can be installed directly in explosive areas. It can withstand continuous exposure to potentially explosive environments that contain flammable gases or dust, and requires no additional protective enclosures for operation in either gas or dust environments.

HMT370EX offers several probe options for different applications. Thanks to the detachable probe module, probes can be easily replaced and removed for calibration outside the hazardous area without removing the entire transmitter.

The transmitter has 2 analog current output channels (4 - 20 mA) for connection via safety barriers. For easy-to-use access to configuration, diagnostics, and calibration and adjustment functionalities, the probe and transmitter body can be connected to Vaisala Insight PC software for configuration either together as one unit or separately.

2.2 Basic features and options

- Available measurement parameters: relative humidity (RH) and temperature (T)
 - For a list of calculated measurement parameters, see Available measurement parameters (page 12).
- Ex classification: IECEx, ATEX, CML,NEPSI, KCs, FM, MET, and UKEX certified for use in Zone 0 and Zone 20 environments: for full Ex classifications, see the region-specific information in Regional safety certification overview (page 19).
- 2 analog outputs (4 20 mA, scalable, isolated)
- Display options: graphical LCD display or non-display model
- Power supply input: 12 28 V
- Compatible with Vaisala Insight PC software

2.3 Hazardous area safety

CAUTION! Do not install or use HMT370EX in a hazardous area before reviewing the safety information relevant to your region: see Regional safety certification overview (page 19).

2.4 Available measurement parameters

Table 3 (page 12) lists the available HMT370EX measurement parameter options and their abbreviations and units for the standard probe options HMP371, HMP373, HMP374, HMP375, HMP377, and HMP378.

Table 3 $\;$ Available measurement parameters for HMP371, HMP373, HMP374, HMP375, HMP377, and HMP378 $\;$

Parameter	Abbreviation	Unit
Relative humidity	RH	%RH
Temperature	Т	°C (°F)
Dew point temperature	T _d	°C (°F)
Dew point / frost point temperature	T _{d/f}	°C (°F)
Absolute humidity	a	g/m ³ (gr/ft ³)
Mixing ratio	х	g/kg (gr/lb)
Wet-bulb temperature	T _w	°C (°F)
Water concentration	H ₂ O	ppm _v
Water vapor pressure	pw	hPa (psi)
Water vapor saturation pressure	pws	hPa (psi)
Enthalpy	h	kJ/kg (Btu/lb)
Dew point temperature difference	ΔΤ	°C (°F)
Absolute humidity at NTP	aNTP	g/m ³ (gr/ft ³)
Water mass fraction	H ₂ O _w	ppm _w

Table 4 (page 12) lists the measurement parameter options available for the oil and fuel probe variants HMP378F and HMP378H.

Table 4 Available measurement parameters for HMP378F and HMP378H

Parameter	Abbreviation	Unit	
Available for both HMP378F and HMP378H			
Temperature	Т	°C (°F)	
Relative saturation	RS	%RS	
Water activity	a _w		

Parameter	Abbreviation	Unit
Only available for HMP378F		
Water concentration in oil ¹⁾	H ₂ O (oil)	ppm _w
Only available for HMP378H		
Water concentration in JET A-1 fuel	H ₂ O (fuel)	ppm _w
Saturation temperature	T _s	°C (°F)

 The default calculation coefficients for water concentration in oil (ppm_w) are valid for mineral transformer oil. For more information on default and oil-specific calculation coefficients, see HMP378F calculation model with average oil coefficients (page 117) and HMP378F calculation model with oil-specific coefficients (page 118).

2.5 Display options

The HMT370EX transmitter can be ordered either with a graphical LCD display, or alternatively without a display. The display options are shown in Figure 1 (page 14).

Figure 1 HMT370EX transmitter display options

- 1 Transmitter with display: LCD display with 4-button interface
- 2 Transmitter without display: LED status indicator

In the display model, probe and transmitter configuration can be carried out either using the 4-button interface of the display, or by connecting the probe or transmitter to Vaisala Insight PC software. In the model without display, all configuration must be carried out with Vaisala Insight PC software.

For information on Vaisala Insight PC software, see Vaisala Insight PC software (page 103).

For information on the display interface, see Local display overview (page 94).

2.5.1 LED states in transmitter with no display

In the transmitter model with no display, the status LED indicator on the front of the transmitter provides a visual indication of the transmitter's status. If the transmitter LED status indicates that notifications or error messages exist, connect to Vaisala Insight PC software to view status information and carry out any required configuration.

For instructions on connecting to Insight, see Connecting to Insight PC software (page 103). For an overview of the Insight software, see Vaisala Insight PC software (page 103).

LED color	Meaning
Not lit	Power off.
Green, fast blinking	Starting up.
Green, not blinking	Power on, normal measurement.
Green, slow blinking	Notification or warning, normal measurement. Connect to Insight to view status information and configure.
Red	Error. Connect to Insight to view status information and configure.
Red and blinking	Critical error. Connect to Insight to view status information and configure.

	Table 5	LED	status	indicator	states
--	---------	-----	--------	-----------	--------

2.6 Connectivity to Vaisala Insight software

The HMT370EX transmitter and HMT370EX series probes can be connected to Vaisala Insight software either together as one unit or separately with a Vaisala USB cable (see Spare parts and accessories (page 141)). With the Insight software, you can:

- Calibrate and adjust the measurement.
- Test and adjust the analog outputs.
- Configure analog output parameter selection, scaling, error, and clipping settings.
- Configure environmental compensations, measurement settings, and local display settings.
- View real-time measurements and device and status information.

More information

Connecting to Insight PC software (page 103)

2.7 Transmitter parts

The external parts of the transmitter are shown in Figure 2 (page 16), and the internal parts of the transmitter are shown in Figure 3 (page 17).

Figure 2 HMT370EX transmitter external parts

- 1 Detachable probe body
- 2 Transmitter body (for internal parts, see Figure 3 (page 17))
- 3 Graphical LCD display (see Display options (page 14))
- 4 Display interface buttons (see Local display overview (page 94))
- 5 Wall pads (4 pcs)
- 6 Retrofit mounting plate for replacing HMT360 installations (optional)
- 7 Probe body locking wheel
- 8 Probe head (for information on different probe options, see HMT370EX probe options overview (page 61))
- 9 Grounding terminal
- 10 Lead-throughs for wiring (for lead-through accessory options, see Cable gland and conduit options (page 17))

Figure 3 HMT370EX transmitter internal parts

- 1 Holes for mounting screws
- 2 Screw terminals and output test points: see 2a and 2b
- 2a Analog output channel 1 and 2 multimeter test points for current and voltage
- 2b Screw terminals for wiring analog output channels 1 and 2
- 3 Cable fastening clamps
- 4 Transmitter grounding terminal
- 5 Transmitter service port (M8, requires Vaisala USB cable accessory)

2.7.1 Cable gland and conduit options

The HMT370EX transmitter body has two M20x1.5 lead-throughs that can be fitted with cable glands, conduit fittings, and plugs, as required by your application. By default, the transmitter comes delivered with 2 different plug types on the transmitter lead-throughs as shown in Figure 4 (page 18).

Figure 4 Default plugs in HMT370EX lead-throughs

- 1 Removable plastic transport cover: must be replaced (fold sides of transport cover together and pull out)
- 2 Metal sealing plug: can be used in final installation

The plastic transport cover (1) must always be replaced with an Ex compliant cable gland, conduit, or seal when wiring HTM370EX. The metal sealing plug (2) can be left in place and used in the final installation, if the right-hand lead-through is not used.

Cable glands, conduits, and plugs are available from Vaisala as accessories (listed in Table 6 (page 18)).

Table 6 Cable lead-through accessories

Accessory	Vaisala item code
Cable gland M20 x 1.5 for Ø 5 11 mm cable	265207SP
Cable gland M20 x 1.5 for Ø 10 14 mm cable	265208SP
Conduit fitting M16	265243SP
Conduit fitting NPT1/2"	265240SP
Dummy plug (Ex, 2 pcs)	254931SP

CAUTION! If you use lead-through accessories not ordered from Vaisala, note the following requirements:

- The cable glands and cables used for wiring the device must not impair the Ex protection.
- Unused lead-throughs must be sealed using Ex compliant plugs.
- The glands and plugs must be water and dust tight (minimum IP rating: IP54).

3. HMT370EX regional safety certification information

3.1 Regional safety certification overview

The certification requirements in different regions (for example, ATEX certification in the EU and CML certification in Japan) involve differences in, for example, the specific conditions of use that are applicable to the product in each region. The safety information specific to each region is available in the following chapters:

- ATEX/IECEx safety certification information (page 20)
- Japan safety certification information (page 26)
- China safety certification information (page 32)
- Korea safety certification information (page 38)
- US (FM) safety certification information (page 43)
- US/CAN (MET) safety certification information (page 50)
- UK (UKEX) safety certification information (page 55)

HMT370EX Series Ex classification by region

Table 7 (page 19) shows the Ex classification of HMT370EX in each certification region. For the most up-to-date list of regional certifications, see the HMT370EX product page www.vaisala.com/HMT370EX.

Table 7 HMT370EX Series regional Ex classifications

Region	Ex classification
IECEx (international certification) / ATEX (EU	II 1 G Ex ia IIC T4 Ga
certification)	II 1 D Ex ia IIIC T ₂₀₀ 85 °C Da
	$-40 \text{ °C} \le T_{amb} \le +60 \text{ °C}$
Japan (CML)	Ex ia IIC T4 Ga
	Ex ia IIIC T ₂₀₀ 85°C Da
	CML 21JPN2417X
China (NEPSI)	Ex ia IIC T3~T6 Ga
	GYJ21.1325X
Korea (KCs)	Ex ia IIC T4 Ga
인증 : 방호장치 안전인증 고시 2021-22 호 인증번호 : 21-KA4BO-0891X, 21-KA4BO-0892X	Ex ia IIIC T ₂₀₀ 85 °C Da
	$-40 \text{ °C} \le T_{amb} \le +60 \text{ °C}$
	IECEx EESF 20.0044.X
	21-KA4BO-0891X, 21-KA4BO-0892X

Region	Ex classification
FM (US)	Class I, Zone O, AEx ia IIC T4 Ga
	Zone 20, AEx ia IIIC T85°C Da
	IS Class I, Division 1, Groups A, B, C, and D T4
	IS Class II, III, Division 1, Groups E, F, and G T85°C
MET (US/CAN)	Class I, Zone O, AEx ia IIC T4 Ga
	Class II, Zone 20, AEx ia IIIC T 85°C Da
	Class I, Division 1, Groups A, B, C, and D T4
	Class II, Division 1, Groups E, F, and G T 85 °C
	Ex ia IIC T4 Ga
	Ex ia IIIC T 85 °C Da
UKEX (UK)	II 1 G Ex ia IIC T4 Ga
	II 1 D Ex ia IIIC T200 85 °C Da
	$-40 \text{ °C} \leq \text{Tamb} \leq +60 \text{ °C}$
	CML 21UKEX2316X

3.2 ATEX/IECEx safety certification information

This chapter contains the safety certification information (for example, specific conditions of use) related to the ATEX (EU) and IECEx (international) certifications.

The Vaisala document code of the multilingual (EN, DE, FR, NL, ES, PT, IT, HU, CS, PL, FI, ET, SV, NO, DA) ATEX and IECEx version of *HMT370EX Installation and Safety Guide* is *M212306EN*.

A printed version of the M212306EN installation and safety guide is delivered with the transmitter in ATEX/IECEx deliveries, and the document is also available on the HMT370EX product page www.vaisala.com/HMT370EX.

3.2.1 Using HMT370EX Series transmitters in hazardous locations

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

In hazardous environments, always connect the transmitters via galvanic isolators or Zener barriers. A galvanic isolator or Zener barrier must also be used when the transmitter and probe body are in a safe area, but the probe head is installed in a hazardous environment. For wiring information, see the galvanic isolator and Zener barrier wiring diagrams included in this document.

HMT370EX does not include a galvanic isolator or a Zener barrier. They can be ordered as optional accessories from Vaisala.

WARNING! HMT370EX series transmitters have been designed for use in hazardous locations as specified by the product classification. The personnel installing, using, or maintaining HMT370EX transmitters are responsible for determining the appropriate protection concept for the specific application HMT370EX is used in, and that the hazardous area classification of the device meets the requirements of the application.

WARNING! If the equipment is used in a manner not specified by Vaisala, the protection provided by the equipment may be impaired.

HMT370EX series transmitters are certified for use in hazardous areas as defined by the following classifications:

Table 8 HMT370EX series hazardous area classifications

Certification	HMT370EX classification
IECEx ¹⁾ / ATEX ²⁾	ll 1 G Ex ia IIC T4 Ga
	II 1 D Ex ia IIIC T ₂₀₀ 85 °C Da
	$-40~^{\circ}C \leq T_{amb} \leq +60~^{\circ}C$

- 1) International certification
- 2) EU certification

CAUTION! The personnel installing, operating, and maintaining HMT370EX transmitters must have the required competencies for working in the hazardous location, as defined by the applicable standards.

For information on the standards that apply to using HMT370EX based on the classification of the device, see HMT370EX certification documentation and the declarations of conformity related to HMT370EX at www.vaisala.com/declarationofconformity.

3.2.2 Guidelines for safe use in hazardous conditions

HMT370EX Series parts overview

Figure 5 HMT370EX parts overview

HMT370EX Series transmitters consist of 3 main parts: the transmitter body, a detachable probe body, and a probe head attached to the probe body, either directly or using a cable. Figure 5 (page 22) shows the main parts.

- 1 Probe heads (for variant descriptions, see HMT370EX User Guide)
- 1a Probe head filters
- 2 Probe body
- 3 Transmitter body

CAUTION! Removing or modifying parts is not permitted. Modifications carried out by the user can impair the Ex protection of the device or otherwise damage the device.

The different probe head variants are designed for a range of applications, and have their own specifications. Ensure that the transmitter body, probe body, and probe head are each placed in an environment that matches the specification of the part. For allowed ambient temperature ranges, see Table 9 (page 23).

Equipment part	Allowed ambient temperature range
Transmitter body	-40 °C +60 °C (-40 +140 °F)
Probe body	-40 °C +60 °C (-40 +140 °F)
Probe head HMP371	Temperature class T4:
	-40 °C +60 °C (-40 +140 °F)
Probe head HMP373	Rubber cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +80 °C (-40 +176 °F)
	FEP cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +100 °C (-40 +212 °F)
	Temperature class T4:
	-40 °C +120 °C (-40 +248 °F)
Probe heads HMP374, HMP375, HMP377, HMP378, HMP378F, and HMP378H	Temperature class T6:
	-70 °C +55 °C (-94 +131 °F)
	Temperature class T5:
	-70 °C +100 °C (-94 +212 °F)
	Temperature class T4:
	-70 °C +135 °C (-94 +275 °F)
	Temperature class T3:
	-70 °C +180 °C (-94 +356 °F)

Table 9 Allowed ambient temperature ranges

3.2.2.1 Specific conditions of use

CAUTION! With the installation of the equipment in Zone 0 Group II area it has to be ensured that sparks due to impact or friction do not occur.

Wiring requirements

- The cable glands and cables used for wiring the device must not impair the Ex protection.
 - Unused lead-throughs must be sealed using Ex compliant plugs.

• Select a strain relief option that suits the application (either use cable glands that include strain relief or install separate clamps: see IEC 60079-14).

CAUTION! Connect only de-energized wires. Never switch on the power supply input before completing the wiring and closing the transmitter body.

Intrinsic safety

The overvoltage category of HMT370EX transmitters is I (non-mains equipment), and ambient pollution degree is 4, as specified in IEC 60664-1. For intrinsically safe input parameters, see Table 10 (page 24).

Table 10 Intrinsically safe input parameters

Parameter	Value	Associated apparatus entity parameters
Ui	28 VDC	$U_o \leq U_i$
li	100 mA	$I_0 \leq I_i$
P _i	700 mW	$P_o \le P_i$
C _i	12.1 nF	$C_o \ge C_i + C_{cable}$
Li	16 μH	$L_o \ge L_i + L_{cable}$

Using analog output test points

There are test points for measuring the voltages and currents of the analog outputs, located above each screw terminal block as shown in Figure 6 (page 25). Accessing the test points on the component board requires opening the transmitter enclosure.

Figure 6 Location of test points and service port

- 1 Multimeter test points for analog output channels 1 and 2
- 2 Service port for PC connection

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

Use an intrinsically safe multimeter that won't cause the intrinsically safe input parameters listed in Table 10 (page 24) to be exceeded when it is connected in series (current measurement) or parallel (voltage measurement) to the associated apparatus.

Using the service port

The service port (see Figure 6 (page 25)) must only be used in a safe area. Either remove the transmitter from the hazardous area or ensure that a safe work procedure has been implemented in the hazardous area. Only use the Vaisala accessory PC connection cable with the service port.

Maintenance

The probe (includes probe body and head) can be detached and replaced by the user. The probe head filter (see Figure 5 (page 22)) is also user-replaceable. For other maintenance requirements, contact Vaisala.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

The content in this chapter is maintained in the following separately tracked document:

Document ID: M212506EN

Revision: D (11 Oct 2021)

3.3 Japan safety certification information

This chapter contains the safety certification information (for example, specific conditions of use) related to the HMT370EX Series Ex certification in Japan.

The Vaisala document code of the multilingual (English and Japanese) Japan certification (CML) version of *HMT370EX Installation and Safety Guide* is *M212662EN*.

A printed version of the M212662EN installation and safety guide is delivered with the transmitter in Japanese certification deliveries, and the document is also available on the HMT370EX product page www.vaisala.com/HMT370EX.

3.3.1 Using HMT370EX Series transmitters in hazardous locations

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

In hazardous environments, always connect the transmitters via galvanic isolators or Zener barriers. A galvanic isolator or Zener barrier must also be used when the transmitter and probe body are in a safe area, but the probe head is installed in a hazardous environment. For wiring information, see the galvanic isolator and Zener barrier wiring diagrams included in this document.

HMT370EX does not include a galvanic isolator or a Zener barrier. They can be ordered as optional accessories from Vaisala.

WARNING! HMT370EX Series transmitters have been designed for use in hazardous locations as specified by the product classification. The personnel installing, using, or maintaining HMT370EX transmitters are responsible for determining the appropriate protection concept for the specific application HMT370EX is used in, and that the hazardous area classification of the device meets the requirements of the application.

WARNING! If the equipment is used in a manner not specified by Vaisala, the protection provided by the equipment may be impaired.

HMT370EX Series transmitters are certified for use in hazardous areas as defined by the following classifications:

Certification	HMT370EX classification
IECEx (international	ll 1 G Ex ia IIC T4 Ga
certification)	II 1 D Ex ia IIIC T ₂₀₀ 85 °C Da
	$-40 \text{ °C} \le T_{amb} \le +60 \text{ °C}$
CML (Japan)	Ex ia IIC T4 Ga
	Ex ia IIIC T ₂₀₀ 85°C Da
	CML 21JPN2417X

CAUTION! The personnel installing, operating, and maintaining HMT370EX transmitters must have the required competencies for working in the hazardous location, as defined by the applicable standards.

For information on the standards that apply to using HMT370EX based on the classification of the device, see HMT370EX certification documentation and the declarations of conformity related to HMT370EX at www.vaisala.com/declarationofconformity.

3.3.2 Guidelines for safe use in hazardous conditions

HMT370EX Series parts overview

Figure 7 HMT370EX parts overview

HMT370EX Series transmitters consist of 3 main parts: the transmitter body, a detachable probe body, and a probe head attached to the probe body, either directly or using a cable. Figure 7 (page 28) shows the main parts.

- 1 Probe heads (for variant descriptions, see HMT370EX User Guide)
- 1a Probe head filters
- 2 Probe body
- 3 Transmitter body

CAUTION! Removing or modifying parts is not permitted. Modifications carried out by the user can impair the Ex protection of the device or otherwise damage the device.

The different probe head variants are designed for a range of applications, and have their own specifications. Ensure that the transmitter body, probe body, and probe head are each placed in an environment that matches the specification of the part. For allowed ambient temperature ranges, see Table 12 (page 29).

Equipment part	Allowed ambient temperature range
Transmitter body	-40 °C +60 °C (-40 +140 °F)
Probe body	-40 °C +60 °C (-40 +140 °F)
Probe head HMP371	Temperature class T4:
	-40 °C +60 °C (-40 +140 °F)
Probe head HMP373	Rubber cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +80 °C (-40 +176 °F)
	FEP cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +100 °C (-40 +212 °F)
	Temperature class T4:
	-40 °C +120 °C (-40 +248 °F)
Probe heads HMP374, HMP375, HMP377, HMP378, HMP378F, and HMP378H	Temperature class T6:
	-70 °C +55 °C (-94 +131 °F)
	Temperature class T5:
	-70 °C +100 °C (-94 +212 °F)
	Temperature class T4:
	-70 °C +135 °C (-94 +275 °F)
	Temperature class T3:
	-70 °C +180 °C (-94 +356 °F)

Table 12Allowed ambient temperature ranges

3.3.2.1 Specific conditions of use

CAUTION! With the installation of the equipment in Zone 0 Group II area it has to be ensured that sparks due to impact or friction do not occur.

Wiring requirements

- The cable glands and cables used for wiring the device must not impair the Ex protection.
 - Unused lead-throughs must be sealed using Ex compliant plugs.

- Select a strain relief option that suits the application (either use cable glands that include strain relief or install separate clamps: see IEC 60079-14).
- Japan: Use only cables suitable for +80°C (+176 °F).

CAUTION! Connect only de-energized wires. Never switch on the power supply input before completing the wiring and closing the transmitter body.

Intrinsic safety

The overvoltage category of HMT370EX transmitters is I (non-mains equipment), and ambient pollution degree is 4, as specified in IEC 60664-1. For intrinsically safe input parameters, see Table 13 (page 30).

Table 13 Intrinsically safe input parameters

Parameter	Value	Associated apparatus entity parameters
U _i	28 VDC	$U_o \leq U_i$
li	100 mA	$I_0 \leq I_i$
Pi	700 mW	$P_o \le P_i$
C _i	12.1 nF	$C_o \ge C_i + C_{cable}$
Li	16 µН	$L_o \ge L_i + L_{cable}$

Using analog output test points

There are test points for measuring the voltages and currents of the analog outputs, located above each screw terminal block as shown in Figure 8 (page 31). Accessing the test points on the component board requires opening the transmitter enclosure.

Figure 8 Location of test points and service port

- 1 Multimeter test points for analog output channels 1 and 2
- 2 Service port for PC connection

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

Use an intrinsically safe multimeter that won't cause the intrinsically safe input parameters listed in Table 13 (page 30) to be exceeded when it is connected in series (current measurement) or parallel (voltage measurement) to the associated apparatus.

Using the service port

The service port (see Figure 8 (page 31)) must only be used in a safe area. Either remove the transmitter from the hazardous area or ensure that a safe work procedure has been implemented in the hazardous area. Only use the Vaisala accessory PC connection cable with the service port.

Maintenance

The probe (includes probe body and head) can be detached and replaced by the user. The probe head filter (see Figure 5 (page 22)) is also user-replaceable. For other maintenance requirements, contact Vaisala.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

3.4 China safety certification information

This chapter contains the safety certification information (for example, specific conditions of use) related to the HMT370EX Series Ex certification in China.

The Vaisala document code of the multilingual (English and Chinese) China certification (NEPSI) version of *HMT370EX Installation and Safety Guide* is *M212704EN*. A printed version of the M212704EN installation and safety guide is delivered with the transmitter in Chinese certification deliveries, and the document is also available on the HMT370EX product page www.vaisala.com/HMT370EX.

3.4.1 Using HMT370EX Series transmitters in hazardous locations

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

In hazardous environments, always connect the transmitters via galvanic isolators or Zener barriers. A galvanic isolator or Zener barrier must also be used when the transmitter and probe body are in a safe area, but the probe head is installed in a hazardous environment. For wiring information, see the galvanic isolator and Zener barrier wiring diagrams included in this document.

HMT370EX does not include a galvanic isolator or a Zener barrier. They can be ordered as optional accessories from Vaisala.

WARNING! HMT370EX series transmitters have been designed for use in hazardous locations as specified by the product classification. The personnel installing, using, or maintaining HMT370EX transmitters are responsible for determining the appropriate protection concept for the specific application HMT370EX is used in, and that the hazardous area classification of the device meets the requirements of the application.

WARNING! If the equipment is used in a manner not specified by Vaisala, the protection provided by the equipment may be impaired.

HMT370EX series transmitters are certified for use in hazardous areas as defined by the following classifications:

Certification	HMT370EX classification
IECEx (international certification)	ll 1 G Ex ia IIC T4 Ga
	II 1 D Ex ia IIIC T ₂₀₀ 85 °C Da
	$-40 \text{ °C} \le T_{amb} \le +60 \text{ °C}$
NEPSI (China)	Ex ia IIC T3-T6 Ga
	GYJ21.1325X

Table 14 HMT370EX series hazardous area classifications

CAUTION! The personnel installing, operating, and maintaining HMT370EX transmitters must have the required competencies for working in the hazardous location, as defined by the applicable standards.

For information on the standards that apply to using HMT370EX based on the classification of the device, see HMT370EX certification documentation and the declarations of conformity related to HMT370EX at www.vaisala.com/declarationofconformity.

3.4.2 Guidelines for safe use in hazardous conditions

HMT370EX Series parts overview

Figure 9 HMT370EX parts overview

HMT370EX Series transmitters consist of 3 main parts: the transmitter body, a detachable probe body, and a probe head attached to the probe body, either directly or using a cable. Figure 9 (page 34) shows the main parts.

- 1 Probe heads (for variant descriptions, see HMT370EX User Guide)
- 1a Probe head filters
- 2 Probe body
- 3 Transmitter body

The different probe head variants are designed for a range of applications, and have their own specifications. Ensure that the transmitter body, probe body, and probe head are each placed in an environment that matches the specification of the part. For allowed ambient temperature ranges, see Table 15 (page 34).

Table 15	Allowed	ambient	temperature	ranges
----------	---------	---------	-------------	--------

Equipment part	Allowed ambient temperature range
Transmitter body	-40 °C +60 °C (-40 +140 °F)
Probe body	-40 °C +60 °C (-40 +140 °F)
Equipment part	Allowed ambient temperature range
-------------------------------------	-----------------------------------
Probe head HMP371	Temperature class T4:
	-40 °C +60 °C (-40 +140 °F)
Probe head HMP373	Rubber cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +80 °C (-40 +176 °F)
	FEP cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +100 °C (-40 +212 °F)
	Temperature class T4:
	-40 °C +120 °C (-40 +248 °F)
Probe heads HMP374, HMP375, HMP377,	Temperature class T6:
HMP378, HMP378F, and HMP378H	-70 °C +55 °C (-94 +131 °F)
	Temperature class T5:
	-70 °C +100 °C (-94 +212 °F)
	Temperature class T4:
	-70 °C +135 °C (-94 +275 °F)
	Temperature class T3:
	-70 °C +180 °C (-94 +356 °F)

3.4.2.1 Specific conditions of use

The associated "X" suffix for the HMT370EX certificate number indicates the following specific conditions of use:

- With the installation of the equipment in EPL Ga Group II, when the enclosure is made from aluminum alloy, it has to be ensured that sparks due to impact or friction do not occur.
- The cable glands and blanking elements used with the transmitter must conform to requirements of IEC 60079-0 (GB 3836.1).

Notices for equipment use

- 1. The transmitter is designed for use in a normal ambient temperature range of -40 $^{\circ}C$... +60 $^{\circ}C$ (-40 ... +140 $^{\circ}F$).
- 2. The transmitter body has two alternative types: display and 4-button keypad, or LED indicator. The temperature class of both types is T4.

3. Transmitter maximum input parameters:

Max. input voltage Ui (V)	Max. input current li (mA)	Max. input power Pi (mW)	Max. input parame	ters
28	100	700	Ci(nF)	Li(µH)
			12.1	16

- 4. When the transmitter is used in mixed explosive gas atmospheres, the transmitter must be used with certified intrinsic safety associated apparatus in intrinsic safety system. The system wiring must comply with the installation manuals of the transmitter and intrinsic safety associated apparatus. The terminals for connection must not be wrong.
- 5. The enclosure Type of Protection of the transmitter is IP54.
- 6. To avoid dismissing and damaging the explosion-proof characteristics of the transmitter, it is strictly prohibited for the user to modify the electrical components. The user must contact the product manufacturers to solve any operating problems.
- 7. Electrical installations design, selection, erection, installations inspection, maintenance, equipment repair, overhaul and reclamation shall comply with relative requirements in the manual, GB 3836.13-2013 "爆炸性环境 第13部分:设备的修理、检修、修复和改造" (note: IEC 60079-19 MOD), GB/T 3836.15-2017 "爆炸性环境 第15部分:电气装置的设计、选型和安装" (note: IEC 60079-14 MOD), GB/T 3836.16-2017

"爆炸性环境 第16部分:电气 装置的检查与维护" (note: IEC 60079-17 MOD), GB/T 3836.18-2017 "爆炸性环境 第18部分:本质安全电气系统" (note: IEC 60079-25 MOD) 及 GB 50257-2014 "电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范" (English name: Code for construction and acceptance of electric equipment on fire and explosion hazard electrical equipment installation engineering).

Wiring requirements

- The cable glands and cables used for wiring the device must not impair the Ex protection.
 Unused lead-throughs must be sealed using Ex compliant plugs.
- Select a strain relief option that suits the application (either use cable glands that include strain relief or install separate clamps: see IEC 60079-14).

CAUTION! Connect only de-energized wires. Never switch on the power supply input before completing the wiring and closing the transmitter body.

Intrinsic safety

The overvoltage category of HMT370EX transmitters is I (non-mains equipment), and ambient pollution degree is 4, as specified in IEC 60664-1. For intrinsically safe input parameters, see Table 16 (page 36).

Table 16 Intrinsically safe input parameters

Parameter	Value	Associated apparatus entity parameters
Ui	28 VDC	$U_o \leq U_i$

Parameter	Value	Associated apparatus entity parameters
li	100 mA	$I_0 \leq I_i$
Pi	700 mW	$P_0 \le P_i$
C _i	12.1 nF	$C_o \ge C_i + C_{cable}$
Li	16 μΗ	$L_o \ge L_i + L_{cable}$

Using analog output test points

There are test points for measuring the voltages and currents of the analog outputs, located above each screw terminal block as shown in Figure 10 (page 37). Accessing the test points on the component board requires opening the transmitter enclosure.

Figure 10 Location of test points and service port

- 1 Multimeter test points for analog output channels 1 and 2
- 2 Service port for PC connection

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

Use an intrinsically safe multimeter that won't cause the intrinsically safe input parameters listed in Table 16 (page 36) to be exceeded when it is connected in series (current measurement) or parallel (voltage measurement) to the associated apparatus.

Using the service port

The service port (see Figure 10 (page 37)) must only be used in a safe area. Either remove the transmitter from the hazardous area or ensure that a safe work procedure has been implemented in the hazardous area. Only use the Vaisala accessory PC connection cable with the service port.

Maintenance

The probe (includes probe body and head) can be detached and replaced by the user. The probe head filter (see Figure 9 (page 34)) is also user-replaceable. For other maintenance requirements, contact Vaisala.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

3.5 Korea safety certification information

This chapter contains the safety certification information (for example, specific conditions of use) related to the HMT370EX Series Ex certification in Korea.

The Vaisala document code of the multilingual (English and Korean) Korea certification (KCs) version of *HMT370EX Installation and Safety Guide* is *M212717EN*.

A printed version of the M212717EN installation and safety guide is delivered with the transmitter in Japanese certification deliveries, and the document is also available on the HMT370EX product page www.vaisala.com/HMT370EX.

3.5.1 Using HMT370EX Series transmitters in hazardous locations

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

In hazardous environments, always connect the transmitters via galvanic isolators or Zener barriers. A galvanic isolator or Zener barrier must also be used when the transmitter and probe body are in a safe area, but the probe head is installed in a hazardous environment. For wiring information, see the galvanic isolator and Zener barrier wiring diagrams included in this document.

HMT370EX does not include a galvanic isolator or a Zener barrier. They can be ordered as optional accessories from Vaisala.

WARNING! If the equipment is used in a manner not specified by Vaisala, the protection provided by the equipment may be impaired.

HMT370EX series transmitters are certified for use in hazardous areas as defined by the following classifications:

Certification	HMT370EX classification
IECEx (international certification) / ATEX (EU	II 1 G Ex ia IIC T4 Ga
certification)	II 1 D Ex ia IIIC T ₂₀₀ 85 °C Da
	-40 °C \leq T _{amb} \leq +60 °C
KCs (Korea)	Ex ia IIC T4 Ga
인증 : 방호장치 안전인증 고시 2021-22 호 인증번호 : 21-KA4BO-0891X, 21-KA4BO-0892X	Ex ia IIIC T ₂₀₀ 85 °C Da
	-40 °C \leq T _{amb} \leq +60 °C
	IECEx EESF 20.0044.X
	21-KA4BO-0891X, 21-KA4BO-0892X

Table 17 HMT370EX series hazardous area classifications

CAUTION! The personnel installing, operating, and maintaining HMT370EX transmitters must have the required competencies for working in the hazardous location, as defined by the applicable standards.

For information on the standards that apply to using HMT370EX based on the classification of the device, see HMT370EX certification documentation and the declarations of conformity related to HMT370EX at www.vaisala.com/declarationofconformity.

3.5.2 Guidelines for safe use in hazardous conditions

HMT370EX Series parts overview

Figure 11 HMT370EX parts overview

HMT370EX Series transmitters consist of 3 main parts: the transmitter body, a detachable probe body, and a probe head attached to the probe body, either directly or using a cable. Figure 11 (page 40) shows the main parts.

- 1 Probe heads (for variant descriptions, see HMT370EX User Guide)
- 1a Probe head filters
- 2 Probe body
- 3 Transmitter body

The different probe head variants are designed for a range of applications, and have their own specifications. Ensure that the transmitter body, probe body, and probe head are each placed in an environment that matches the specification of the part. For allowed ambient temperature ranges, see Table 18 (page 40).

Equipment part	Allowed ambient temperature range
Transmitter body	-40 °C +60 °C (-40 +140 °F)
Probe body	-40 °C +60 °C (-40 +140 °F)

Table 18 Allowed ambient temperature ranges

Equipment part	Allowed ambient temperature range
Probe head HMP371	Temperature class T4:
	-40 °C +60 °C (-40 +140 °F)
Probe head HMP373	Rubber cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +80 °C (-40 +176 °F)
	FEP cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +100 °C (-40 +212 °F)
	Temperature class T4:
	-40 °C +120 °C (-40 +248 °F)
Probe heads HMP374, HMP375, HMP377,	Temperature class T6:
HMP378, HMP378F, and HMP378H	-70 °C +55 °C (-94 +131 °F)
	Temperature class T5:
	-70 °C +100 °C (-94 +212 °F)
	Temperature class T4:
	-70 °C +135 °C (-94 +275 °F)
	Temperature class T3:
	-70 °C +180 °C (-94 +356 °F)

3.5.2.1 Specific conditions of use

CAUTION! With the installation of the equipment in Zone 0 Group II area it has to be ensured that sparks due to impact or friction do not occur.

Wiring requirements

- The cable glands and cables used for wiring the device must not impair the Ex protection.
 Unused lead-throughs must be sealed using Ex compliant plugs.
- Select a strain relief option that suits the application (either use cable glands that include strain relief or install separate clamps: see IEC 60079-14).

CAUTION! Connect only de-energized wires. Never switch on the power supply input before completing the wiring and closing the transmitter body.

Intrinsic safety

The overvoltage category of HMT370EX transmitters is I (non-mains equipment), and ambient pollution degree is 4, as specified in IEC 60664-1. For intrinsically safe input parameters, see Table 19 (page 42).

Table 19 Intrinsically safe input parameters

Parameter	Value	Associated apparatus entity parameters
Ui	28 VDC	$U_o \leq U_i$
li	100 mA	$I_0 \leq I_i$
P _i	700 mW	$P_o \le P_i$
C _i	12.1 nF	$C_o \ge C_i + C_{cable}$
Li	16 μH	$L_o \ge L_i + L_{cable}$

Using analog output test points

There are test points for measuring the voltages and currents of the analog outputs, located above each screw terminal block as shown in Figure 12 (page 42). Accessing the test points on the component board requires opening the transmitter enclosure.

Figure 12 Location of test points and service port

- 1 Multimeter test points for analog output channels 1 and 2
- 2 Service port for PC connection

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

Use an intrinsically safe multimeter that won't cause the intrinsically safe input parameters listed in Table 19 (page 42) to be exceeded when it is connected in series (current measurement) or parallel (voltage measurement) to the associated apparatus.

Using the service port

The service port (see Figure 12 (page 42)) must only be used in a safe area. Either remove the transmitter from the hazardous area or ensure that a safe work procedure has been implemented in the hazardous area. Only use the Vaisala accessory PC connection cable with the service port.

Maintenance

The probe (includes probe body and head) can be detached and replaced by the user. The probe head filter (see Figure 11 (page 40)) is also user-replaceable. For other maintenance requirements, contact Vaisala.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

3.6 US (FM) safety certification information

This chapter contains the safety certification information (for example, specific conditions of use) related to the HMT370EX Series Ex certification in the US (Factory Mutual (FM) certification).

The Vaisala document code of the US (FM) certification version of *HMT370EX Installation and* Safety Guide is M212733EN.

A printed version of the M212733EN installation and safety guide is delivered with the transmitter in US (FM) certification deliveries, and the document is also available on the HMT370EX product page www.vaisala.com/HMT370EX.

3.6.1 Using HMT370EX Series transmitters in hazardous locations

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

WARNING! Review the FM Approvals wiring requirements for intrinsically safe operation in FM Approvals control drawing (page 49) before installation.

In hazardous environments, always connect the transmitters via galvanic isolators or Zener barriers. A galvanic isolator or Zener barrier must also be used when the transmitter and probe body are in a safe area, but the probe head is installed in a hazardous environment. For wiring information, see the galvanic isolator and Zener barrier wiring diagrams included in this document.

HMT370EX does not include a galvanic isolator or a Zener barrier. They can be ordered as optional accessories from Vaisala.

WARNING! HMT370EX series transmitters have been designed for use in hazardous locations as specified by the product classification. The personnel installing, using, or maintaining HMT370EX transmitters are responsible for determining the appropriate protection concept for the specific application HMT370EX is used in, and that the hazardous area classification of the device meets the requirements of the application.

WARNING! If the equipment is used in a manner not specified by Vaisala, the protection provided by the equipment may be impaired.

HMT370EX series transmitters are certified for use in hazardous areas as defined by the following classifications:

Table 20 HMT370EX series hazardous area classifications

Certification	HMT370EX classification
IECEx ¹⁾ / ATEX ²⁾	II 1 G Ex ia IIC T4 Ga
	II 1 D Ex ia IIIC T ₂₀₀ 85 °C Da
	$-40 \text{ °C} \le T_{amb} \le +60 \text{ °C}$
FM (US)	Class I, Zone O, AEx ia IIC T4 Ga
	Zone 20, AEx ia IIIC T85°C Da
	IS Class I, Division 1, Groups A, B, C, and D T4
	IS Class II, III, Division 1, Groups E, F, and G T85°C

- 1) International certification
- 2) EU certification

CAUTION! The personnel installing, operating, and maintaining HMT370EX transmitters must have the required competencies for working in the hazardous location, as defined by the applicable standards.

For information on the standards that apply to using HMT370EX based on the classification of the device, see HMT370EX certification documentation and the declarations of conformity related to HMT370EX at www.vaisala.com/declarationofconformity.

3.6.2 Guidelines for safe use in hazardous conditions

HMT370EX Series parts overview

Figure 13 HMT370EX parts overview

HMT370EX Series transmitters consist of 3 main parts: the transmitter body, a detachable probe body, and a probe head attached to the probe body, either directly or using a cable. Figure 13 (page 45) shows the main parts.

- 1 Probe heads (for variant descriptions, see HMT370EX User Guide)
- 1a Probe head filters
- 2 Probe body
- 3 Transmitter body

The different probe head variants are designed for a range of applications, and have their own specifications. Ensure that the transmitter body, probe body, and probe head are each placed in an environment that matches the specification of the part. For allowed ambient temperature ranges, see Table 21 (page 46).

CAUTION! Removing or modifying parts is not permitted. Modifications carried out by the user can impair the Ex protection of the device or otherwise damage the device.

Table 21 Allowed ambient temperature ranges

Equipment part	Allowed ambient temperature range
Transmitter body	-40 °C +60 °C (-40 +140 °F)
Probe body	-40 °C +60 °C (-40 +140 °F)
Probe head HMP371	Temperature class T4:
	-40 °C +60 °C (-40 +140 °F)
Probe head HMP373	Rubber cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +80 °C (-40 +176 °F)
	FEP cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +100 °C (-40 +212 °F)
	Temperature class T4:
	-40 °C +120 °C (-40 +248 °F)
Probe heads HMP374, HMP375, HMP377,	Temperature class T6:
HMP378, HMP378F, and HMP378H	-70 °C +55 °C (-94 +131 °F)
	Temperature class T5:
	-70 °C +100 °C (-94 +212 °F)
	Temperature class T4:
	-70 °C +135 °C (-94 +275 °F)
	Temperature class T3:
	-70 °C +180 °C (-94 +356 °F)

3.6.2.1 Specific conditions of use

CAUTION! Potential risk of sparking from aluminum alloy enclosure. The equipment shall be installed in such manner as to prevent the possibility of sparks resulting from friction or impact against the enclosure.

Wiring requirements

- The cable glands and blanking elements used with the transmitter shall conform to requirements of ANSI/UL 60079-0.
 - Unused lead-throughs must be sealed using Ex compliant blanking elements.
- Select a strain relief option that suits the application (either use cable glands that include strain relief or install separate clamps: see IEC 60079-14).

CAUTION! Connect only de-energized wires. Never switch on the power supply input before completing the wiring and closing the transmitter body.

WARNING! Review the FM Approvals wiring requirements for intrinsically safe operation in FM Approvals control drawing (page 49) before installation.

Intrinsic safety

The overvoltage category of HMT370EX transmitters is I (non-mains equipment), and ambient pollution degree is 4, as specified in IEC 60664-1. For intrinsically safe input parameters, see Table 22 (page 47).

Table 22 Intrinsically safe input parameters

Parameter	Value	Associated apparatus entity parameters
Ui	28 VDC	$U_o \leq U_i$
li	100 mA	$I_0 \leq I_i$
Pi	700 mW	$P_o \leq P_i$
C _i	12.1 nF	$C_o \ge C_i + C_{cable}$
Li	16 μΗ	$L_o \ge L_i + L_{cable}$

Using analog output test points

There are test points for measuring the voltages and currents of the analog outputs, located above each screw terminal block as shown in Figure 14 (page 48). Accessing the test points on the component board requires opening the transmitter enclosure.

Figure 14 Location of test points and service port

- 1 Multimeter test points for analog output channels 1 and 2
- 2 Service port for PC connection

Use an intrinsically safe multimeter that won't cause the intrinsically safe input parameters listed in Table 22 (page 47) to be exceeded when it is connected in series (current measurement) or parallel (voltage measurement) to the associated apparatus.

Using the service port

The service port (see Figure 14 (page 48)) must only be used in a safe area. Either remove the transmitter from the hazardous area or ensure that a safe work procedure has been implemented in the hazardous area. Only use the Vaisala accessory PC connection cable with the service port.

Maintenance

The probe (includes probe body and head) can be detached and replaced by the user. The probe head filter (see Figure 13 (page 45)) is also user-replaceable. For other maintenance requirements, contact Vaisala.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

3.6.2.2 FM Approvals control drawing

Figure 15 (page 49) describes the FM Approvals requirements for intrinsic safety when wiring HMT370EX series transmitters. The content in this section is maintained in Vaisala document M212732EN.

The entity parameters for HMT370EX series transmitters are: Vmax=28 V, Imax=100 mA, Ci=12.1 nF, Li=16 μ H, Pi=700 mW

The HMT370EX transmitter series has the following approved probe options: HMP371, HMP373, HMP374, HMP375, HMP377, HMP378, and HMP378F/H

HMT370EX series transmitters are approved for use in: Class I, Division 1, Groups A, B, C, and D Class II, III, Division 1, Groups E, F, and G Class I, Zone O, Aex ia IIC T4 Ga Zone 20, Aex ia IIIC T85°C Da

NOTE:

- Barrier installation must be completed in accordance with ANSI/ISA RP 12.6 and the National Electrical Code.
- 2. Intrinsically safe barrier ground must be less than 1 ohm.
- 3. Maximum safe area voltage (Um) is 250 V.

Figure 15 FM Approved wiring diagram for intrinsically safe operation

3.7 US/CAN (MET) safety certification information

This chapter contains the safety certification information (for example, specific conditions of use) related to the HMT370EX Series Ex certification in the US/CAN (MET certification).

The Vaisala document code of the US/CAN (MET) certification version of *HMT370EX Installation and Safety Guide* is *M212707EN*.

A printed version of the M212707EN installation and safety guide is delivered with the transmitter in US/CAN (MET) certification deliveries, and the document is also available on the HMT370EX product page www.vaisala.com/HMT370EX.

3.7.1 Using HMT370EX Series transmitters in hazardous locations

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

In hazardous environments, always connect the transmitters via galvanic isolators or Zener barriers. A galvanic isolator or Zener barrier must also be used when the transmitter and probe body are in a safe area, but the probe head is installed in a hazardous environment. For wiring information, see the galvanic isolator and Zener barrier wiring diagrams included in this document.

HMT370EX does not include a galvanic isolator or a Zener barrier. They can be ordered as optional accessories from Vaisala.

WARNING! HMT370EX series transmitters have been designed for use in hazardous locations as specified by the product classification. The personnel installing, using, or maintaining HMT370EX transmitters are responsible for determining the appropriate protection concept for the specific application HMT370EX is used in, and that the hazardous area classification of the device meets the requirements of the application.

WARNING! If the equipment is used in a manner not specified by Vaisala, the protection provided by the equipment may be impaired.

HMT370EX series transmitters are certified for use in hazardous areas as defined by the following classifications:

Certification	HMT370EX classification
IECEx ¹⁾ / ATEX ²⁾	ll 1 G Ex ia IIC T4 Ga
	II 1 D Ex ia IIIC T ₂₀₀ 85 °C Da
	$-40 \text{ °C} \le T_{amb} \le +60 \text{ °C}$
MET (US/CAN)	Class I, Zone O, AEx ia IIC T4 Ga
	Class II, Zone 20, AEx ia IIIC T 85°C Da
	Class I, Division 1, Groups A, B, C, and D T4
	Class II, Division 1, Groups E, F, and G T 85 °C
	Ex ia IIC T4 Ga
	Ex ia IIIC T 85 °C Da

Table 23 HMT370EX series hazardous area classifications

- 1) International certification
- 2) EU certification

CAUTION! The personnel installing, operating, and maintaining HMT370EX transmitters must have the required competencies for working in the hazardous location, as defined by the applicable standards.

For information on the standards that apply to using HMT370EX based on the classification of the device, see HMT370EX certification documentation and the declarations of conformity related to HMT370EX at www.vaisala.com/declarationofconformity.

3.7.2 Guidelines for safe use in hazardous conditions

HMT370EX Series parts overview

Figure 16 HMT370EX parts overview

HMT370EX Series transmitters consist of 3 main parts: the transmitter body, a detachable probe body, and a probe head attached to the probe body, either directly or using a cable. Figure 16 (page 52) shows the main parts.

- 1 Probe heads (for variant descriptions, see HMT370EX User Guide)
- 1a Probe head filters
- 2 Probe body
- 3 Transmitter body

The different probe head variants are designed for a range of applications, and have their own specifications. Ensure that the transmitter body, probe body, and probe head are each placed in an environment that matches the specification of the part. For allowed ambient temperature ranges, see Table 24 (page 52).

Equipment part	Allowed ambient temperature range
Transmitter body	-40 °C +60 °C (-40 +140 °F)
Probe body	-40 °C +60 °C (-40 +140 °F)

Table 24 Allowed ambient temperature ranges

Equipment part	Allowed ambient temperature range
Probe head HMP371	Temperature class T4:
	-40 °C +60 °C (-40 +140 °F)
Probe head HMP373	Rubber cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +80 °C (-40 +176 °F)
	FEP cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +100 °C (-40 +212 °F)
	Temperature class T4:
	-40 °C +120 °C (-40 +248 °F)
Probe heads HMP374, HMP375, HMP377,	Temperature class T6:
HMP378, HMP378F, and HMP378H	-70 °C +55 °C (-94 +131 °F)
	Temperature class T5:
	-70 °C +100 °C (-94 +212 °F)
	Temperature class T4:
	-70 °C +135 °C (-94 +275 °F)
	Temperature class T3:
	-70 °C +180 °C (-94 +356 °F)

3.7.2.1 Specific conditions of use

CAUTION! With the installation of the equipment in Zone 0 Group II area it has to be ensured that sparks due to impact or friction do not occur.

Wiring requirements

- Only use cables and cable glands suitable for +80 °C (+176 °F)
- The cable glands and cables used for wiring the device must not impair the Ex protection.
 Unused lead-throughs must be sealed using Ex compliant plugs.
- Select a strain relief option that suits the application (either use cable glands that include strain relief or install separate clamps: see IEC 60079-14).

CAUTION! Connect only de-energized wires. Never switch on the power supply input before completing the wiring and closing the transmitter body.

Intrinsic safety

The overvoltage category of HMT370EX transmitters is I (non-mains equipment), and ambient pollution degree is 4, as specified in IEC 60664-1. For intrinsically safe input parameters, see Table 25 (page 54).

Table 25 Intrinsically safe input parameters

Parameter	Value	Associated apparatus entity parameters
Ui	28 VDC	$U_o \leq U_i$
li	100 mA	$I_0 \leq I_i$
P _i	700 mW	$P_o \le P_i$
C _i	12.1 nF	$C_o \ge C_i + C_{cable}$
Li	16 μH	$L_o \ge L_i + L_{cable}$

Using analog output test points

There are test points for measuring the voltages and currents of the analog outputs, located above each screw terminal block as shown in Figure 17 (page 54). Accessing the test points on the component board requires opening the transmitter enclosure.

Figure 17 Location of test points and service port

- 1 Multimeter test points for analog output channels 1 and 2
- 2 Service port for PC connection

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

Use an intrinsically safe multimeter that will not cause the intrinsically safe input parameters listed in Table 25 (page 54) to be exceeded when it is connected in series (current measurement) or parallel (voltage measurement) to the associated apparatus.

Using the service port

The service port (see Figure 17 (page 54)) must only be used in a safe area. Either remove the transmitter from the hazardous area or ensure that a safe work procedure has been implemented in the hazardous area. Only use the Vaisala accessory PC connection cable with the service port.

Maintenance

The probe (includes probe body and head) can be detached and replaced by the user. The probe head filter (see Figure 16 (page 52)) is also user-replaceable. For other maintenance requirements, contact Vaisala.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

3.8 UK (UKEX) safety certification information

This chapter contains the safety certification information (for example, specific conditions of use) related to the HMT370EX Series Ex certification in the UK (UKEX certification).

The Vaisala document code of the UK (UKEX) certification version of *HMT370EX Installation* and *Safety Guide* is *M212752EN*.

A printed version of the M212752EN installation and safety guide is delivered with the transmitter in UK (UKEX) certification deliveries, and the document is also available on the HMT370EX product page www.vaisala.com/HMT370EX.

3.8.1 Using HMT370EX Series transmitters in hazardous locations

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

In hazardous environments, always connect the transmitters via galvanic isolators or Zener barriers. A galvanic isolator or Zener barrier must also be used when the transmitter and probe body are in a safe area, but the probe head is installed in a hazardous environment. For wiring information, see the galvanic isolator and Zener barrier wiring diagrams included in this document.

HMT370EX does not include a galvanic isolator or a Zener barrier. They can be ordered as optional accessories from Vaisala.

WARNING! HMT370EX series transmitters have been designed for use in hazardous locations as specified by the product classification. The personnel installing, using, or maintaining HMT370EX transmitters are responsible for determining the appropriate protection concept for the specific application HMT370EX is used in, and that the hazardous area classification of the device meets the requirements of the application.

WARNING! If the equipment is used in a manner not specified by Vaisala, the protection provided by the equipment may be impaired.

HMT370EX series transmitters are certified for use in hazardous areas as defined by the following classifications:

Certification	HMT370EX classification
IECEx ¹⁾ / ATEX ²⁾	II 1 G Ex ia IIC T4 Ga
	II 1 D Ex ia IIIC T ₂₀₀ 85 °C Da
	$-40 \text{ °C} \le T_{amb} \le +60 \text{ °C}$
UKEX (UK)	II 1 G Ex ia IIC T4 Ga
	II 1 D Ex ia IIIC T200 85 °C Da
	$-40 \text{ °C} \leq \text{Tamb} \leq +60 \text{ °C}$
	CML 21UKEX2316X

Table 26 HMT370EX series hazardous area classifications

- 1) International certification
- 2) EU certification

CAUTION! The personnel installing, operating, and maintaining HMT370EX transmitters must have the required competencies for working in the hazardous location, as defined by the applicable standards.

For information on the standards that apply to using HMT370EX based on the classification of the device, see HMT370EX certification documentation and the declarations of conformity related to HMT370EX at www.vaisala.com/declarationofconformity.

3.8.2 Guidelines for safe use in hazardous conditions

HMT370EX Series parts overview

Figure 18 HMT370EX parts overview

HMT370EX Series transmitters consist of 3 main parts: the transmitter body, a detachable probe body, and a probe head attached to the probe body, either directly or using a cable. Figure 18 (page 57) shows the main parts.

- 1 Probe heads (for variant descriptions, see HMT370EX User Guide)
- 1a Probe head filters
- 2 Probe body
- 3 Transmitter body

The different probe head variants are designed for a range of applications, and have their own specifications. Ensure that the transmitter body, probe body, and probe head are each placed in an environment that matches the specification of the part. For allowed ambient temperature ranges, see Table 27 (page 58).

CAUTION! Removing or modifying parts is not permitted. Modifications carried out by the user can impair the Ex protection of the device or otherwise damage the device.

Table 27 Allowed ambient temperature ranges

Equipment part	Allowed ambient temperature range
Transmitter body	-40 °C +60 °C (-40 +140 °F)
Probe body	-40 °C +60 °C (-40 +140 °F)
Probe head HMP371	Temperature class T4:
	-40 °C +60 °C (-40 +140 °F)
Probe head HMP373	Rubber cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +80 °C (-40 +176 °F)
	FEP cable version:
	Temperature class T6:
	-40 °C +55 °C (-40 +131 °F)
	Temperature class T5:
	-40 °C +100 °C (-40 +212 °F)
	Temperature class T4:
	-40 °C +120 °C (-40 +248 °F)
Probe heads HMP374, HMP375, HMP377,	Temperature class T6:
HMP378, HMP378F, and HMP378H 	-70 °C +55 °C (-94 +131 °F)
	Temperature class T5:
	-70 °C +100 °C (-94 +212 °F)
	Temperature class T4:
	-70 °C +135 °C (-94 +275 °F)
	Temperature class T3:
	-70 °C +180 °C (-94 +356 °F)

3.8.2.1 Specific conditions of use

CAUTION! With the installation of the equipment in Zone 0 Group II area it has to be ensured that sparks due to impact or friction do not occur.

Wiring requirements

- The cable glands and cables used for wiring the device must not impair the Ex protection.
 Unused lead-throughs must be sealed using Ex compliant plugs.
- Select a strain relief option that suits the application (either use cable glands that include strain relief or install separate clamps: see IEC 60079-14).

CAUTION! Connect only de-energized wires. Never switch on the power supply input before completing the wiring and closing the transmitter body.

Intrinsic safety

The overvoltage category of HMT370EX transmitters is I (non-mains equipment), and ambient pollution degree is 4, as specified in IEC 60664-1. For intrinsically safe input parameters, see Table 28 (page 59).

Table 28Intrinsically safe input parameters

Parameter	Value	Associated apparatus entity parameters
Ui	28 VDC	$U_o \leq U_i$
li	100 mA	$I_0 \leq I_i$
Pi	700 mW	$P_0 \le P_i$
C _i	12.1 nF	$C_o \ge C_i + C_{cable}$
Li	16 μΗ	$L_o \ge L_i + L_{cable}$

Using analog output test points

There are test points for measuring the voltages and currents of the analog outputs, located above each screw terminal block as shown in Figure 19 (page 60). Accessing the test points on the component board requires opening the transmitter enclosure.

Figure 19 Location of test points and service port

- 1 Multimeter test points for analog output channels 1 and 2
- 2 Service port for PC connection

Use an intrinsically safe multimeter that won't cause the intrinsically safe input parameters listed in Table 28 (page 59) to be exceeded when it is connected in series (current measurement) or parallel (voltage measurement) to the associated apparatus.

Using the service port

The service port (see Figure 19 (page 60)) must only be used in a safe area. Either remove the transmitter from the hazardous area or ensure that a safe work procedure has been implemented in the hazardous area. Only use the Vaisala accessory PC connection cable with the service port.

Maintenance

The probe (includes probe body and head) can be detached and replaced by the user. The probe head filter (see Figure 18 (page 57)) is also user-replaceable. For other maintenance requirements, contact Vaisala.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

4. Probe options

4.1 HMT370EX probe options overview

Figure 20 (page 61) shows the different probe options available for HMT370EX series transmitters. The HMP371 fixed probe option uses a probe head that attaches directly to the probe body. In the other probe options (HMP373, HMP374, HMP375, HMP377, and HMP378), the probe head is attached to the probe body with a cable.

Figure 20 HMT370EX probe options

- 1 HMP371 fixed probe (page 63)
- 2 HMP373 probe for confined spaces (page 64)
- 3 HMP374 probe for high pressure applications (page 65)
- 4 HMP375 probe for high temperature applications (page 69)
- 5 HMP377 probe for high humidity applications (page 70)
- 6 HMP378 probe for pressurized pipelines (page 71)
 - HMP378 variant: HMP378F probe option for measuring oil moisture and temperature (page 79)
 - HMP378 variant: HMP378H probe option for measuring JET A-1 fuel moisture and temperature (page 79)

HMP371 and HMP373 probes can also be ordered as temperature only probes that do not include humidity measurement options. For more information on the T-only HMP371 and HMP373 probe options, see Temperature only probe option (HMP371 and HMP373) (page 63).

More information

Probe installation overview (page 83)

4.1.1 HMT370EX probe accessories

Table 29 (page 62) lists the available accessories for each probe option.

Table 29 HMT370EX probe accessories

Accessory	Vaisala item code	Models
M12 Indigo USB Adapter cable accessory for connecting HMT370EX probes to Insight	USB2	All models
Thread adapter ISO 1/2" to NPT 1/2"	210662SP	All models
Duct installation kit	210697	HMP373, HMP377
Mounting flange	210696	HMP375
Cable gland M20 x 1.5 with split seal	HMP247CG	HMP373, HMP375, HMP377
Fitting body M22 x 1.5	17223SP	HMP374
Fitting body NPT1/2	17225SP	HMP374
Fitting body ISO1/2 solid structure	DRW212076SP	HMP378
Fitting body NPT1/2 solid structure	212810SP	HMP378
Swagelok fitting for 12 mm probe, 1/2" NPT thread	SWG12NPT12	HMP377
Swagelok fitting for 12 mm probe, 3/8" ISO thread	SWG12ISO38	HMP377
Swagelok fitting for 12 mm probe, 1/2" ISO thread	SWG12ISO12	HMP377
Ball valve ISO 1/2 with welding joint • Pressure range at +20 °C (+68 °F) 0 20 bar (0 290 psia) (during installation max. 10 bar (145 psia)	BALLVALVE-1	HMP378
Manual press	HM36854SP	HMP378

4.2 Temperature only probe option (HMP371 and HMP373)

HMP371 and HMP373 probes can be ordered as temperature only probes. In the T-only probe version, humidity measurements cannot be configured into use. The factory default output configuration for the T-only versions of HMP371 and HMP373 is:

- 1. Channel 1: Temperature output
- 2. Channel 2: Output disabled

If you need to verify whether the probe in your transmitter is a T-only version, check the configuration code on the product label.

Figure 21 Location of configuration code on product label

1 Configuration code location on product label

If the **3rd** digit of the configuration code is **4**, **5**, **6**, or **7**, the probe is a T-only version.

Example: HMT370EX 11 **4** 1 N B 1 A C 1 N N

4.3 HMP371 fixed probe

Dimensions

The HMP371 fixed probe option has a probe head that attaches directly on the probe body, making it suitable for wall mounting applications.

Figure 22 Dimensions in mm (inches)

Specifications

Table 30 HMP371 for wall mounting

Property	Description/value
Temperature range	-40 +60 °C (-40 +140 °F)
Probe diameter	12 mm (0.47 in)

4.4 HMP373 probe for confined spaces

Dimensions

HMP373 is a small size (Ø = 12 mm) general-purpose probe that is suitable for installation into confined spaces such as ducts and channels using the duct installation kit available from Vaisala (item code 210697: see Figure 24 (page 65)).

Figure 23 Dimensions in mm (inches)

Specifications

The HMP373 probe option has 2 operating temperature range options depending on the cable selected for the probe. The rubber cable option has a temperature range of -40 ... +80 °C (-40 ... +176 °F). With the Teflon cable option, the temperature range is -40 ... +120 °C (-40 ... +248 °F).

Table 31 HMP373 for confined spaces

Property	Description/value	
Temperature range with teflon cable	-40 +120 °C (-40 +248 °F)	
Temperature range with rubber cable	-40 +80 °C (-40 +176 °F)	
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)	
Probe diameter	12 mm (0.47 in)	
Installation		
Duct installation kit	210697	
Cable gland M20x1.5 with splitting seal	HMP247CG	

Property	Description/value
Swagelok for 12mm probe, 1/2" NPT thread	SWG12NPT12

Duct installation kit 210697

Figure 24 Left: Installation kit for duct mounting. Right: Installation flange. Aluminum or stainless steel.

4.5 HMP374 probe for high pressure applications

The HMP374 probe option is designed for measurement in pressurized spaces or vacuum chambers. HMP374 is provided with a nut, a fitting screw, and a sealing washer. Keep the fitting screw and the nut in place on the body of the probe during handling to prevent damage to the highly polished surface of the probe.

For instructions on connecting the probe to a process with the fitting screw, see Attaching HMP374 to process (page 67).

Dimensions

Figure 25 Dimensions in mm (inches)

Specifications

Table 32 HMP374 for high pressure

Property	Description/value
Temperature range	-70 +180 °C (-94 +356 °F)
Pressure range	0 10 MPa
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)
Probe diameter	12 mm (0.47 in)
Fitting body M22x1.5	17223
Fitting body NPT1/2	17225

4.5.1 Attaching HMP374 to process

Figure 26 HMP374 fitting body and clasp nut

- 1 Clasp nut
- 2 Fitting screw, M22×1.5 or NPT 1/2"
- 3 Sealing washer

To attach the probe to the process:

- > 1. Detach the fitting screw from the nut and slide it off the probe body.
 - 2. Attach the fitting screw to the chamber wall with a sealing washer. Tighten the fitting screw into the threaded sleeve with a torque wrench. The tightening torque is 150 ± 10 Nm (110 ± 7 ft-lbs).
 - 3. Insert the body of the probe into the fitting screw and attach the nut manually to the fitting screw so that the connection feels tight.
 - 4. Mark both the fitting screw and the nut hex.

5. Tighten the nut a further 30° (1/12) turn, or if you have a torque wrench tighten it with a torque of 80 ± 10 Nm (60 ± 7 ft-lbs).

1 Draw a line on the clasp nut and the fitting screw to mark the 30° (1/12) turn tightening rotation.

When re-tightening the nut after detachment the nut must be tightened without increased effort.

6. Clean and grease the tightening cone of the fitting screw after every tenth detachment. Change the sealing washer every time the fitting screw is detached. Use high-vacuum grease (for example Dow Corning) or similar grease.

CAUTION! In pressurized processes it is essential to tighten the probe very carefully when installing to prevent the loosening of the probe by the action of pressure.

CAUTION! When HMP374 is installed in a process with a pressure differing from normal atmospheric pressure, you must enter the pressure value of the process as an environmental compensation in order to receive accurate measurement results. For information on entering environmental compensations with the transmitter display interface or Vaisala Insight PC software, see Environmental compensation and measurement settings overview (page 114).

Take care not to overtighten the clasp nut to avoid difficulties when opening it.

4.6 HMP375 probe for high temperature applications

The HMP375 probe option is designed for measurement in high temperature environments.

Dimensions

drilling 16...22 (0.63...0.87)

Figure 27 HMP375 probe and stainless steel installation flange. Dimensions in mm (inches).

Specifications

Table 33 HMP375 for high temperature

Property	Description/value	
Temperature range	-70 +180 °C (-94 +356 °F)	
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)	
Probe diameter	13.5 mm (0.53 in)	
Installation		
Mounting flange	210696	

Property	Description/value
Cable gland M20x1.5 with splitting seal	HMP247CG

4.7 HMP377 probe for high humidity applications

The HMP377 probe option is constructed to be installed in environments with high humidities. The same duct installation kit that is used with HMP373 can be used with HMP377: see Figure 24 (page 65).

Dimensions

Figure 28 Dimensions in mm (inches)

Specifications

Table 34 HMP377 for high humidities

Property	Description/value
Temperature range	-70 +180 °C (-94 +356 °F)
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)
Probe diameter	12 mm (0.47 in)
Installation	
Duct installation kit	210697
Cable gland M20x1.5 with splitting seal	HMP247CG
Swagelok for 12 mm probe, 3/8" ISO thread	SWG12ISO38
Swagelok for 12 mm probe, 1/2" NPT thread	SWG12NPT12
4.8 HMP378 probe for pressurized pipelines

The HMP378 probe option is especially suitable for measurements inside pipelines. Due to its sliding fit (available probe lengths: 226 mm and 448 mm (8.90 in/17.6 in)), HMP378 is easy to install into and remove from a pressurized process. A ball valve kit (Vaisala item code: BALLVALVE-1) is available for connecting the probe to a pressurized process or pipeline.

Installation options

For instructions on installing HMP378 into a process with the fitting body (R1/2"ISO7/1 or NPT1/2") of the probe, see Attaching HMP378 to process with fitting body (page 73).

For instructions on installation with the optional ball valve kit, see Attaching ball valve kit to process (page 75) and Installing HMP378 with ball valve kit BALLVALVE-1 (page 77).

HMP378F and HMP378H probe variants for measuring oil and JET A-1 fuel moisture

The HMP378F and HMP378H probe options are variants of the standard HMP378, designed for measurements in oil (HMP378F; default calculation coefficients valid for transformer oil) and JET A-1 fuel (HMP378H). They provide a specialized selection of measurement parameters (see Table 4 (page 12)) intended specifically for oil and JET A-1 fuel measurements. With HMP378F, oil-specific calculation coefficients can be configured into use to customize the measurement for a specific oil type: see Configuring calculation coefficients (page 117).

For more information on HMP378F, see HMP378F probe option for measuring oil moisture and temperature (page 79).

For more information on HMP378H, see HMP378H probe option for measuring JET A-1 fuel moisture and temperature (page 79).

Dimensions

Length for standard/optional probes

Figure 29 Dimensions in mm (inches)

Specifications

Table 35 HMP378 for pressurized pipelines

Property	Description/value
Temperature range	-70 +180 °C (-94 +356 °F)
Pressure range	0 4 MPa
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)
Probe diameter	13.5 mm/12 mm (0.53 in/0.47 in)
Available probe lengths	226 mm/448 mm (8.90 in/17.6 in)
Installation	
Fitting body ISO1/2 solid structure	DRW212076SP
Fitting body NPT1/2 solid structure	NPTFITBODASP
Ball valve ISO 1/2 with welding joint	BALLVALVE-1

4.8.1 Attaching HMP378 to process with fitting body

Figure 30 HMP378 fitting body and clasp nut

- 1 Clasp nut (27 mm hex nut)
- 2 Fitting body (24 mm hex head): ISO1/2 solid structure or NPT1/2 solid structure
- 3 Sealing material (use one of the following options):
 - 1. LOCTITE® No 542 + activ. No 7649 (T=-55 ... +150 °C (-67 ... +302 °F))
 - 2. MEGA-PIPE EXTRA No 7188 (T=-55 ... +170 °C (-67 ... +338 °F))
 - 3. PTFE tape (T=-60 ... +210 °C (-76 ... +410 °F))

To attach the probe to the process:

- 1. Detach the fitting screw from the nut and slide it off the probe body.
 - 2. Attach the fitting screw to the chamber wall with a sealing washer. Tighten the fitting screw into the threaded sleeve with a torque wrench. The tightening torque is 150 ± 10 Nm (110 ± 7 ft-lbs).
 - 3. Insert the body of the probe into the fitting screw and attach the nut manually to the fitting screw so that the connection feels tight.

4. Tighten the nut a further 50-60° (approximately 1/6 turn) with a wrench. If you have suitable torque wrench, tighten the nut to max 45 ± 5 Nm (33 ± 4 ft-lbs).

1 Draw a line on the clasp nut hex and the fitting body hex to mark the 50-60° (1/6) turn tightening rotation.

Take care not to overtighten the clasp nut to avoid difficulties when opening it.

CAUTION! Take care not to damage the probe body. A damaged body makes the probe less tight and may prevent it from going through the clasp nut.

CAUTION! In pressurized processes it is essential to tighten the supporting nuts and screws very carefully to prevent loosening of the probe by the action of pressure.

CAUTION! When HMP378 is installed in a process with a pressure differing from normal atmospheric pressure, you must enter the pressure value of the process as an environmental compensation in order to receive accurate measurement results. For information on entering environmental compensations with the transmitter display interface or Vaisala Insight PC software, see Environmental compensation and measurement settings overview (page 114).

4.8.2 Attaching ball valve kit to process

- 1 Ball valve handle: must point to the same direction as the ball valve body when installing.
- 2 Extension nipple, threads G1/2 ISO228/1 and R1/2 ISO7/1.
- 3 Ball valve body. When tightening the assembly, turn only from the ball valve body.
- 4 Ball of the ball valve.
- 5 Welding joint, threads R1/2 ISO7/1.

- > 1. Attach the welding joint to the process pipe or chamber.
 - 2. Apply a sealant (MEGA-PIPE EXTRA No. 7188 or LOCTITE® No. 542 with activator No. 7649) on the threads of the welding joint and screw the bottom of the ball valve onto the welding joint.
 - 3. Tighten the ball valve assembly by turning from the ball valve body.

CAUTION! Tightening the ball valve kit by turning the extension nipple can break the sealing. Tighten the ball valve assembly only from the ball valve body.

4. If you need to cap the ball valve assembly before installing or after removing the probe, attach a blanking nut to close the top of the valve.

4.8.3 Installing HMP378 with ball valve kit BALLVALVE-1

Figure 31 Inserting HMP378 into process with ball valve kit

- 1 Manual press tool: use to press the probe down when installing in higher pressure.
- 2 Fitting screw of the probe: attaches the probe to the top of the ball valve.
- 3 Push the probe deep enough to insert the probe filter completely inside the process.
- 4 The groove on the probe indicates the adjustment limit when pulling the probe up. Pull the probe up until the groove is visible before closing the ball valve.
- 5 Ball of the ball valve in closed position.

The ball valve installation kit (Vaisala item code: BALLVALVE-1) is preferred when connecting the probe to a pressurized process or pipeline. Use the ball valve set or a 1/2" ball valve assembly with a ball hole of ø14 mm or more. If you install the probe (ø12 mm) in a process pipe, please note that the nominal size of the pipe must be at least 1 inch (2.54 cm). Use the manual press handle to press the probe into the pressurized (< 10 bar) process or pipeline.

The probe can be installed in the process through the ball valve assembly provided that the process pressure is less than 10 bars. This way, the process does not have to be shut down when installing or removing the probe. However, if the process is shut down before removing the probe, the process pressure can be max. 20 bars.

When measuring temperature dependent quantities make sure that the temperature at the measurement point is equal to that of the process, otherwise the moisture reading may be incorrect.

After attaching the ball valve kit to process as instructed in Attaching ball valve kit to process (page 75), install the probe through the ball valve as follows:

- Shut down the process if the process pressure is more than 10 bars. If the pressure is lower there is no need to shut down the process.
 - 2. Close the ball valve.
 - 3. Seal the threads on the fitting body: see Figure 30 (page 73).
 - 4. Attach the fitting body to the ball valve and tighten it.
 - 5. Slide the clasp nut of the probe toward the filter, as far as it goes.
 - 6. Insert the probe to the fitting body, and manually tighten the clasp nut to the fitting body.
 - 7. Open the ball valve.
 - 8. Push the probe through the ball valve assembly into the process. If the pressure is high, use the pressing handle that is provided with the probe. If you push the probe hard without using the handle, you may damage the cable.

Note that the probe must be pushed so deep that the filter is completely inside the process flow.

Mark the fitting screw and the clasp nut (see Attaching HMP378 to process with fitting body (page 73)).

9. Tighten the clasp nut with a fork wrench a further 50 ... 60° (approximately 1/6 turn). If you have a suitable torque wrench, tighten the nut to max 45 ± 5 Nm (33 ± 4 ft-lbs).

Take care not to tighten the clasp nut more than 60° to avoid difficulties when opening it.

10. If you wish to remove the probe from the process, note that you have to pull the probe out far enough for the valve to have room to close. You cannot close the valve if the groove on the probe body is not visible (see Figure 31 (page 77)).

4.8.4 HMP378F probe option for measuring oil moisture and temperature

The HMP378F probe option is a variant of the standard HMP378, designed for measurements in oil. The mechanics of the probe are the same as in the standard HMP378 probe option (see HMP378 probe for pressurized pipelines (page 71)).

The default HMP378F calculation coefficients (see HMP378F calculation model with average oil coefficients (page 117)) are valid for transformer oil. Typically, moisture in transformer oil measurement with HMP378F has a ppm accuracy of ±10 % of the reading. If required, different oil-specific calculation coefficients can be configured into use to customize HMP378F measurements. For instructions, see Configuring calculation coefficients (page 117).

HMP378F uses the HUMICAP® 180L2 sensor designed specifically for oil and fuel measurements. For HUMICAP 180L2 sensor specifications, see Table 39 (page 133).

The following measurement parameters are available for HMP378F:

Parameter	Abbreviation	Unit
Temperature	Т	°C (°F)
Relative saturation	RS	%RS
Water activity	a _w	-
Water concentration in oil ¹⁾	H ₂ O (oil)	ppm _w

Table 36 HMP378F measurement parameters

 The default calculation coefficients for water concentration in oil (ppm_w) are valid for mineral transformer oil. For more information on default and oil-specific calculation coefficients, see HMP378F calculation model with average oil coefficients (page 117) and HMP378F calculation model with oil-specific coefficients (page 118).

4.8.5 HMP378H probe option for measuring JET A-1 fuel moisture and temperature

The HMP378H probe option is a variant of the standard HMP378, designed for measurements in JET A-1 fuel (typical ppm accuracy: ±15 % of the reading). The mechanics of the probe are the same as in the standard HMP378 probe option (see HMP378 probe for pressurized pipelines (page 71)).

HMP378H uses the HUMICAP® 180L2 sensor designed specifically for oil and fuel measurements. For HUMICAP 180L2 sensor specifications, see Table 39 (page 133).

The following measurement parameters are available for HMP378H:

Table 37 HMP378H measurement parameters

Parameter	Abbreviation	Unit
Temperature	Т	°C (°F)
Relative saturation	RS	%RS
Water activity	a _w	-
Water concentration in JET A-1 fuel	H ₂ O (fuel)	ppm _w
Saturation temperature	Ts	°C (°F)

5. Installation

5.1 HMT370EX installation overview

Figure 32 (page 81) shows an example HMT370EX installation using the HMP373 probe with the probe head mounted with a bracket, and with both lead-throughs fitted with cable glands.

CAUTION! Before starting the installation, review the equipment and safety requirements in this installation overview and the hazardous area safety information relevant to your region: see Regional safety certification overview (page 19).

WARNING! The installation must be carried out in a safe area, or you must ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

WARNING! When HMT370EX is powered, the transmitter enclosure must not be opened in a hazardous area. The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

- Screws for mounting the transmitter:
 - Installation directly through the transmitter body: 2 pcs Ø 5.5 mm screws
 - Installation with optional mounting plate: 4 pcs Ø 5.5 mm screws and 2 pcs M6 Allen screws
- Crosshead screwdriver for transmitter cover captive screws and wiring screw terminals
- · Flathead screwdriver for the grounding terminal
- Cable glands, conduits, and plugs as required in your application, and suitable tools for attaching and tightening them
- · Wire-cutting pliers

Optional:

- Crimping tool and wire ferrules
- Allen key (5 mm) for probe body locking wheel
- Ex-compliant multimeter for testing analog outputs

5.1.1 Installation preparations

Before starting the installation, check the following:

- Make sure that your installation site suits the Ex classification of the transmitter (for classification information relevant to your region, see Regional safety certification overview (page 19)).
- Review the hazardous area information relevant to your region (see Regional safety certification overview (page 19)) for further information on Ex safety requirements related to HMT370EX and specific conditions of use.
- When selecting the cable glands and plugs for your application, review the information in Cable gland and conduit options (page 17).
- Review the wiring diagrams included in this document for information on wiring using either a galvanic isolator or a Zener barrier.
 - Wiring with galvanic isolators (page 88)
 - Wiring with Zener barriers (page 89)

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

CAUTION! When planning the wiring of your application, note that Channel 1 (CH1) must always be wired. The transmitter receives power through the Channel 1 screw terminals, and does not power on if only Channel 2 (CH2) is wired.

5.1.2 Probe installation overview

HMT370EX transmitters can be used with 6 different probe options that are designed for a variety of applications. The installation options vary from wall mounting (fixed HMP371 probe option) to, for example, duct installations (as shown in the HMP373 example in Figure 33 (page 83)) and ball valve installations (HMP378 probe option for pressurized pipelines).

The different probe options have varying operating environment specifications, installation methods, and installation accessories depending on their intended applications. For more information on each option, see HMT370EX probe options overview (page 61). Also review the safety information related to allowed ambient temperature ranges for probes before installation: see the information relevant to your certification region in Regional safety certification overview (page 19).

5.1.3 HMT370EX transmitter dimensions

Figure 34 HMT370EX transmitter dimensions

5.2 Mounting

Figure 35 Mounting HMT370EX directly through the transmitter body

Select a surface (for example, a wall) for installing the transmitter. You can mount the transmitter directly to the installation surface with 2 screws, or use an optional mounting plate that attaches to the back of the transmitter.

 Detach the probe body from the transmitter body, loosen the captive screws on the transmitter cover, and open the cover.

- 2. Mount the transmitter body on the installation surface either directly through the transmitter body, or using the optional HMT360 retrofit mounting plate:
 - a. Installation without mounting plate: attach the transmitter body directly to the installation surface with 2 Ø 5.5 mm screws as shown in Figure 35 (page 84). The left-hand screw hole has extra vertical space for adjusting the position of the transmitter after you have attached the right-hand screw.
 - b. Installation with mounting plate: attach the mounting plate to the installation surface with 4 \emptyset 5.5 mm screws, and then attach the transmitter to the mounting plate with 2 M6 Allen screws.

5.3 Attaching cable glands and conduit fittings

The HMT370EX transmitter body has 2 lead-throughs (M20x1.5) for wiring. The combination of cable glands, conduit fittings, and plugs used in the lead-throughs is application-specific, and must be determined by the customer. For information on lead-through accessories available from Vaisala and lead-through accessory requirements, see Cable gland and conduit options (page 17).

CAUTION! If you use lead-through accessories not ordered from Vaisala, note the following requirements:

- The cable glands and cables used for wiring the device must not impair the Ex protection.
- Unused lead-throughs must be sealed using Ex compliant plugs.
- The glands and plugs must be water and dust tight.

 Install the application-specific lead-through accessories and lead the wiring cables through them into the transmitter body: an example is shown below.

5.4 Wiring

WARNING! Protected installation using galvanic isolators or Zener barriers is mandatory in a hazardous environment.

Galvanic isolators and Zener barriers are available from Vaisala as accessories. See Spare parts and accessories (page 141).

CAUTION! Ensure that the transmitter is powered correctly. 12 V DC is the minimum voltage in all conditions, measured at the transmitter screw terminals. If the supply voltage is less than 12 V DC, the analog output current can be erroneous.

It is recommended to use ferrules on the stripped wires to help ensure a secure connection with the screw terminals.

Figure 36 Wiring example using one cable

- I. Prepare the cabling wires as required in your application (cabling either through 1 or 2 lead-throughs).
 - Strip the cable wires: it is recommended to attach ferrules to the contact ends of the wires.
 - b. Open the cable gland and insert a suitable length of the cable inside the transmitter through the cable gland.
 - c. Tighten the cable gland: refer to the instructions of the glands used in your application for maximum tightness.
 - d. If your installation does not require using both lead-throughs, plug the unused lead-through with an Ex compliant seal.
 - 2. Connect the screw terminal wiring as required in your application. For protected installation wiring diagrams, see Wiring with galvanic isolators (page 88) and Wiring with Zener barriers (page 89).
 - a. Open the cable fastening clamps below the screw terminals and lead the cables to the terminals through the clamps.
 - b. Connect the wires to the screw terminals: for an example, see Figure 36 (page 87).

Note that Channel 1 (CH1) must always be wired. The transmitter receives power through the CH1 screw terminals, and does not power on if only Channel 2 (CH2) is wired.

c. Adjust the length of the wires and close the cable fastening clamps so that they hold the cables in place.

Figure 37 Wiring diagram with galvanic isolators

5.4.2 Wiring with Zener barriers

Figure 38 Wiring diagram with Zener barriers

5.5 Finalizing installation: closing transmitter and attaching grounding

 Close the transmitter body cover and tighten the captive screws. Tighten the screws to approximately 3.5 Nm: ensure that there is no gap between the covers.

Ensure that the cover has been tightened sufficiently so that there is no gap between the covers in the area highlighted in the illustration.

2. Attach the probe body to the transmitter.

It is sufficient to tighten the probe body to finger tightness with the locking wheel. To prevent detaching the probe body without tools, you can tighten the locking wheel further with an Allen key (5 mm).

 Connect the grounding terminal on the bottom of the transmitter to the grounding element of the installation site with a 4 mm² grounding wire.

- 4. After grounding the transmitter, switch on the power supply input.
- 5.6 Optional: testing analog output level with a multimeter

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

Always use an Ex compliant multimeter. The output parameters of the multimeter must be compatible with the input parameters of the transmitter.

Figure 39 Multimeter test point overview

If you want to verify the output level of the analog output channels, test the connection as follows:

- 1. Detach the probe body and open the transmitter cover.
 - 2. Connect a multimeter to the mA testing points located above the output screw terminals on the transmitter component board.
 - 3. Start the output test mode either by using the transmitter display interface, or, if using a transmitter without a display, by connecting the transmitter to Insight PC software.
 - a. For instructions on using the output test mode with Insight PC software, see Testing analog output level with Insight (page 112).
 - b. To start the output test mode with the display interface, open the Settings > Analog outputs > Test outputs menu.

Analog output settings		Force outputs to
Output 1 Output 2	•	4 mA 12 mA
Test outputs	•	20 mA
Back	Select	Back Start

- c. Select an output level to force the output to (4, 12, or 20 mA) and select **Start**. Verify the output with the multimeter.
- 4. After verifying the output, remove the multimeter, close the transmitter cover, and reattach the probe body.

5. If the output is incorrect and requires adjustment, see Analog output adjustment overview (page 122).

CAUTION! The service port (see Figure 3 (page 17)) must only be used in a safe area. Either remove the transmitter from the hazardous area or ensure that a safe work procedure has been implemented in the hazardous area. Only use the Vaisala accessory PC connection cable with the service port.

6. HMT370 local display interface

6.1 Local display overview

Figure 40 HMT370EX local display examples: measurement graph view and main menu screen

The display version of the HMT370EX transmitter has graphical LCD display with a 4-button interface. The local display can be used to view measurement information, configure settings, and calibrate and adjust measurements and outputs.

Using local display interface buttons

The display interface has 4 buttons for operating the display menus.

Figure 41 HMT370EX display interface buttons

- 1 Back: press to move back in the menu tree or cancel a selection.
- 2 **Up**: move up in the menu tree or increase a value.
- 3 **Down**: move down in the menu tree or decrease a value.
- 4 Select: press to open a menu or confirm a selection.

Press and hold **Back** to return directly to the main menu.

Press and hold the **Up** or **Down** button to increase or decrease a value faster.

Measurement information views

The home view of the display has several options for showing the measurement information of the connected probe. You can switch between the different views (for example, numerical parameters or graph view) using the **Up** and **Down** buttons. The parameter display settings can be configured in the **Settings > Display** menu.

Figure 42 2 parameter view example

Figure 43 Graph view example

RH	50.55 %RH	I
т	35.58 °C	
Td	15.83 °C	
а	7.123 g/m ³	3
×	6.208 g/kg	
	000	Menu

Figure 44 Parameter list view example

Configuration options

You can configure the following settings with the local display:

- · Analog output settings (parameters, scaling, fault indication, output test and adjustment)
- Measurement settings (environmental compensation and filtering factor)
- Display settings (displayed parameters, units, graph visualization options, general display settings such as timeout and PIN code)

In addition to configuration, you can also calibrate and adjust the measurement of the connected probe with different references (1-point or 2-point adjustment), view device and measurement status information, and reset the transmitter back to factory settings.

6.1.1 Local display PIN code

You can enable a (non-configurable) PIN code in the **Settings > Display** menu to prevent using the display menus without entering the code.

The PIN code is the following 4 button presses: Up > Select > Back > Back

Figure 45 Display PIN code button presses

6.1.2 Light and dark display themes

Figure 46 Dark (left) and light (right) display theme examples

You can select either a **Light** or **Dark** display theme to match the lighting conditions of your environment.

The **Light** theme has a light background and dark text and graphics, and the **Dark** theme has a dark background and light text and graphics.

6.1.3 Sleep mode

Figure 47 Transmitter display in sleep mode

You can define a timeout after which the display goes to sleep mode when not used with the **Settings > Display > Timeout** selection (1, 5, 15, 30, 60 minutes or disabled). Pressing any button returns the display back to normal operation from the sleep mode.

6.2 HMT370EX display main menu

Figure 48 HMT370EX display interface main menu

The first view of the display interface menu contains 4 submenus for different configuration options. See the following sections for more information on each submenu:

- Settings menu (page 98)
- Calibration menu (page 101)
- Status menu (page 101)
- Maintenance menu (page 102)

6.3 Settings menu

Figure 49 Settings menu

The Settings menu contains the following configuration options:

Selections for which parameters are displayed, display interface
language, graph settings, display PIN code protection, timeout (sleep
mode), and theme.
Analog output 1 and 2 parameter selection, scaling, error output
selection, and output test mode.
Environmental compensation and filtering factor configuration.

6.3.1 Display menu

Figure 50 Display menu

In the **Display** menu, you can select which parameters are shown on the display, change the local display interface language, and configure graph, unit, display timeout, menu access PIN code, and color theme options.

Displayed parameters Language	Select which measurement parameters are shown on the display. Up to 4 parameters can be shown simultaneously. Set the local display interface language. The available options are English , German French Japanese and Chinese
Count	Cathle and a second s
Graph	visualized in the graph.
Units	Set the display interface to show units either as metric or non-metric.
Menu PIN	Enable or disable using the fixed PIN code to restrict access to configuration
code	menus.
Timeout	Define the time after which the screen enters power saving mode (sleep mode) if not used.
Theme	Set the display interface to use either a Light or Dark color theme.

i

If you have selected a wrong language and need to change the display language, see the instructions in Problems and their possible solutions (page 128). You can also change the display language by connecting the transmitter to the Insight PC software.

6.3.2 Analog outputs menu

Figure 51 Analog output settings

In the **Analog outputs** menu, you can select the measurement parameters that are sent on analog output channels 1 and 2, select the output scaling and error indication level, and test the accuracy of the outputs.

Output 1	Select which measurement is sent on analog output channel 1 and how the measurement value is scaled on the 4 – 20 mA output range. You can also set the current level that is output to indicate an error state (either 3.6 mA or 21 mA).
Output 2 Test outputs	The same configuration options as for Output 1 . You can force the analog output to a fixed value (options: 4, 12, and 20 mA) and read the fixed output to verify that the transmitter outputs are working correctly.

For more information on analog output configuration using the local display or Vaisala Insight PC software, see Analog output configuration overview (page 109).

6.3.3 Measurement settings menu

In the **Measurement settings** menu, you can set environmental compensations and configure the filtering factor.

CAUTI accurat	ON! You must enter the pressure compensation value in order to ely measure calculated parameters that require pressure data. By default,
the pre	ssure compensation value is set as 1013.25 nPa.
Pressure	Enter the pressure of the current measurement environment (in hPa).
Filtering on/off	Enable or disable measurement output filtering using the default filtering factor.
Extended filtering on/off	Enable or disable measurement output filtering using a custom filtering factor value (entered in the Filtering factor selection).
Filtering factor	Enter a custom filtering factor value (requires enabling the Extended filtering factor selection).

6.4 Calibration menu

Figure 52 Calibration menu

In the calibration menu, you can adjust the RH or T measurement of the connected probe using 1 or 2 reference points. You can also view information about the currently existing adjustments and reset the adjustment of the connected probe back to default.

RH adjustment	Relative humidity calibration and adjustment using 1 or 2 reference points.
T adjustment	Temperature calibration and adjustment using 1 or 2 reference points.
Calibration information	Shows information on the adjustments made to the measurement.
Reset probe	Selections for resetting probe measurement adjustments to factory default settings.

6.5 Status menu

Status	
Device status	
Output status	
Measurement status	
About	
Back	Select

The **Status** menu contains options for viewing information about the operation of the device: transmitter and probe status messages, output and measurement status, and general information on the device.

Device status Output status	Device operation information such as notifications and errors. Shows the current statuses of analog output 1 and 2 (output level and measurement)
Measurement status	Shows the current status or statuses of each measurement parameter (for example, DK or Measurement net ready)
About	Device information (software version and manufacturing date).

6.6 Maintenance menu

Restart		•
Restore	factory defaults	

Figure 54	Maintena	ance menu
-----------	----------	-----------

In the maintenance menu, you can restart the transmitter and restore transmitter settings back to factory defaults.

Adjustments made to probe measurement will remain in place also after a transmitter factory reset, as probe adjustments are stored in probe memory.

7. Operating with Insight PC software

7.1 Vaisala Insight PC software

Vaisala Insight PC software is a configuration software for Indigo compatible devices. The supported operating systems are Windows 7 (64-bit), Windows 8.1 (64-bit), and Windows 10 (64-bit).

With the Insight software, you can:

- See device information and status.
- See real-time measurement data.
- Calibrate and adjust device measurement.
- Configure analog output settings such as parameters, scaling and error level, and test and adjust analog output level.
- Configure environmental compensations and measurement settings such as filtering factor and calculation coefficients.

Download Vaisala Insight software at www.vaisala.com/insight.

The probe body can be detached from the transmitter and connected to Insight separately using the probe body service port. You can also connect the transmitter and probe body to Insight together as one unit by using the transmitter service port.

Connecting the probe body separately to Insight software requires the M12 Indigo USB Adapter accessory (Vaisala item USB2). Connecting the transmitter service port to Vaisala Insight software requires the M8-4F USB cable accessory (Vaisala item 219690).

7.1.1 Basic and Advanced user modes

You can switch between the **Basic Mode** and **Advanced Mode** user modes with the selections in the **Settings** menu.

Certain functionalities are only available in **Advanced Mode**. The options enabled by switching to **Advanced Mode** are often intended for administrative users: set the user mode according to the requirements of the personnel that use the device.

7.2 Connecting to Insight PC software

- Computer with Vaisala Insight PC software installed
 - M12 Indigo USB Adapter accessory (Vaisala item USB2) for connecting the probe body to Insight, or the USB connection cable for transmitter service port (M8-4F, Vaisala item 219690).

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

CAUTION! When connecting several devices at the same time, note that your computer may not be able to supply enough power through its USB ports. Use an externally powered USB hub that can supply >2 W for each port.

Figure 55 Connecting to Insight: probe body and transmitter service port locations

- 1. If you want to configure the probe by itself:
 - a. Open the Insight PC software.
 - b. Connect the M12 USB cable (Vaisala item USB2) to a free USB port on the PC.
 - c. Detach the probe body from the transmitter: see Mounting (page 84) for an example.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

- d. Move the probe body to the space you are using to connect the probe to a computer.
- e. Connect the M12 USB cable (Vaisala item USB2) to the service port of the probe.
- f. Wait for Insight to detect the probe.

- 2. If you want to configure the transmitter and probe together as one unit:
 - a. Open the Insight PC software.
 - b. Connect the M8 USB cable (Vaisala item 219690) to a free USB port on the PC.
 - c. Open the transmitter cover: see Mounting (page 84) for an example.
 - d. Reconnect the probe body to the transmitter cover.
 - e. Connect the M8 USB cable (Vaisala item 219690) to the service port on inside of the transmitter cover.
 - f. Wait for Insight to detect the probe.

7.2.1 Installing driver for the USB service cable

Only Windows $\ensuremath{\textcircled{B}}$ operating systems are supported by the driver of the USB service cable.

- 1. Connect the USB service cable to a USB port on your computer. Windows® detects the new device and installs the appropriate driver.
 - Open Devices and Printers from the Windows® Start menu. Use search to find it if necessary (search for "devices").
 - 3. Locate the cable in the list of devices:
 - If the device is listed as Vaisala USB Device with a COM port number in brackets, the cable is ready for use. Note the COM port number, you will need it later.
 - If the device is listed as **Vaisala USB Instrument Cable** without a COM port number listed, you must install the driver manually.

- 4. To install the driver manually:
 - a. Disconnect the USB service cable from the computer.
 - b. Download the Vaisala USB driver at http://www.vaisala.com/software (select the appropriate USB Instrument Driver Setup for your cable).
 - c. Run the USB driver installation program *Vaisala USB Device Driver Setup.exe*. Accept the installation defaults.
 - d. Go back to step 1 and verify that the driver installation works as expected.

7.3 Insight main view with transmitter

Figure 56 Insight main menu and settings: transmitter view

- 1 Select 👸 to access Insight main menu.
 - **Configure Device**: environmental compensation settings, analog output settings, display and graph settings, measurement coefficients, filtering factor, and general settings.
 - Export Settings: creates a text file export of the device settings.
 - **Calibrate**: options for calibrating and adjusting RH and T measurement, adjusting analog outputs, viewing adjustment data, and restoring factory adjustments.
 - Restart device: quick access selection for restarting the device.
 - **Restore factory settings**: restores default settings, clears any user adjustments, and restores the latest factory calibration.
 - **Probe**: selections for restarting the connected probe and restoring factory settings to the probe.
 - About Device: general device information such as serial number and software version.
- 2 Select **Settings** to switch between the **Basic Mode** and **Advanced Mode** user modes, change the units of parameters (metric/non-metric), enter a factory code to access restricted functionalities, or view information about the Insight software.
- 3 **Monitoring** provides options for monitoring and recording selected parameters, and exporting the monitoring data as a CSV (comma-separated values) file.
- 4 Device information menu with the following tabs:
 - Measurements: measurement graph view with parameter drop-down selection.
 - Calibration information: read-only information about the latest stored calibration.
 - Diagnostics: troubleshooting and administrative information about the device status. Also includes options for exporting the device error log and other diagnostics information as files (CSV/ZIP). When contacting Vaisala support, it is recommended to include an up-to-date export of the error log with the support request.

7.4 Insight main view with probe

N Insight 1.0.4.16			- 🗆 X
VAISALA	Devices		MyVaisala Online Store Settings 🗸
Devices 👻	HMP370	O Ø	Basic Mode
HMP370 NOT_SET		Temperature Configure Device	Unit Settings
Monitoring	40.3 %RH •	ZZ.4 °C Calibrate	Factory Code
	51.0	22.5 Restart Device	About Insight
	45.8	21.7 About Device	
	Dew point temperature 10.4 °C Dew/frost point tempe 10.2 °C Absolute humidity 9.27 g/m ³	Dew/frost point tempe 10.4 °C Dew point temperatur 10.2 °C Mixing ratio 312.14 g/kg	

Figure 57 Insight main menu and settings: probe view

When you detach a probe from the transmitter and connect it separately to Insight, the configuration view is otherwise similar as when connecting a transmitter and a probe together (see Insight main view with transmitter (page 107)), but the configuration options are limited to probe functionalities.

8. Analog output configuration

8.1 Analog output configuration overview

HMT370EX has 2 scalable 4 – 20 mA analog output channels. Each output has the following configuration options:

- Output parameter selection
- Output scale low end and high end
- Error output level and clipping limits
- Output testing (force output to a specified level for multimeter testing)

The configuration of the outputs can be changed with the transmitter display interface or by connecting the transmitter to Vaisala Insight PC software.

Configure Device In Advanced Mo HMT370					
Compensation setpoints	Output status		Normal		
Filtering	Output mode		420 mA	~	
Calculation coefficients	Output parameter	6	H2Ow	~	
Probe	Scale low end	0	0		ppm _w
Displayed parameters	Scale high end	6	100		ppm _w
Graph	Error output level	6	3.6		
Display	Low clipping limit	0	1.25		
Analog output 1	Low error limit	0	2.5		
Analog output 2	High clipping limit	0	3.125		
	High error limit	0	6.25		
	Test output level	0			
	Output value		38		ppm _w
	Output level		10.026167		
	Save Close				

Figure 58 Analog output configuration options in Insight PC software

8.2 Configuring analog outputs with Insight

Using the Insight PC software, you can configure the measurement parameter sent on each analog output, the scaling of the parameter, clipping and error limits, and the error output level. In addition to configuration, you can also carry out an output test where the output is forced to a fixed level so it can be verified with a multimeter. Both output channels have the same configuration options.

The analog output configuration view in Insight also shows the status and output mode of the analog output channel: see Figure 58 (page 109).

- 1. Connect to Insight (see Connecting to Insight PC software (page 103)).
 - 2. Select 👸 > Configure Device, and then one of the 2 analog outputs.
 - 3. Select the measurement parameter that is sent on the output channel you are configuring, set the scaling for the output, and define the output level that indicates an error.
 - 4. Define the clipping and error limits.
 - 5. Store the selections with **Save** and exit with **Close**.
 - 6. Repeat the configuration for each output (analog outputs 1, 2, and 3) as required.
 - 7. If you want to test the output, see the instructions in Analog output level test (page 111).

8.3 Configuring analog outputs with local display interface

Using the local display interface of the transmitter, you can configure the measurement parameter sent on each analog output, the scaling of the parameter, and the error output level. In addition to configuration, you can also carry out an output test where the output is forced to a fixed level so it can be verified with a multimeter. Both output channels have the same configuration options.

To view the status of the outputs, select Menu > Status > Output status.

Note that clipping and error limit configuration for the analog outputs can only be carried out with Insight PC software.

Select Menu > Settings > Analog outputs.

- 2. Select the measurement parameter that is sent on the output channel you are configuring, set the scaling for the output, and define the output level that indicates an error.
- 3. Repeat the configuration for each output as required.
- 4. If you want to test the output, see the instructions in Analog output level test (page 111).

8.4 Analog output level test

If you need to verify that the signal from the HMT370EX transmitter's analog output channel is correct, you can force the output of the channel to a specific value and measure the output level with a multimeter.

The analog output level tested can be carried out either with the local display interface or using Vaisala Insight PC software.

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

Always use an Ex compliant multimeter. The output parameters of the multimeter must be compatible with the input parameters of the transmitter.

8.4.1 Testing analog output level with local display interface

If you want to verify the output level of an analog output channel, test the connection as follows:

- 1. Detach the probe body and open the transmitter cover.
 - 2. Connect a multimeter to the mA testing points located above the output screw terminals on the transmitter component board (see Figure 59 (page 111)).

 To start the output test mode with the local display interface, open the Settings > Analog outputs > Test outputs menu.

Analog output settings		Force outputs to
Output 1	•	4 mA
Output 2	•	12 mA
Test outputs	•	20 mA
Back	Select	Back Start

- 4. Select an output level to force the output to (4, 12, or 20 mA) and select **Start**. Verify the output with the multimeter and select **Finish** when done.
- 5. If the output is incorrect and requires adjustment, see Analog output adjustment overview (page 122).
- 6. Remove the multimeter, close the transmitter cover, and reattach the probe body.

8.4.2 Testing analog output level with Insight

- 1. Detach the probe body and open the transmitter cover.
 - 2. Connect a multimeter to the mA testing points located above the output screw terminals on the transmitter component board (see Figure 59 (page 111)).
 - 3. Connect to Insight (see Connecting to Insight PC software (page 103)).
 - 4. Select 👸 > Configure Device, and then the analog output channel you want to test.
 - 5. Enter a test output value in the Test output level and select Save.

Test output level	0	4	
Output value			 %RH
Output level		4	
Save	Close		

6. The **Output mode** field will show that the **Test mode** is now active.

Output status	Test mode		
Output mode	420 mA	~	

- 7. Verify that the multimeter reading matches the Test output level value.
- 8. If the output is incorrect and requires adjustment, see Analog output adjustment overview (page 122).

 After verifying the output, clear the value from the Test output level field and select Save. This switches the Test mode off.

CAUTION! The **Test mode** must always be switched off after verifying the output level to return to normal measurement mode.

10. Remove the multimeter, close the transmitter cover, and reattach the probe body.

9. Environmental compensation and measurement settings

9.1 Environmental compensation and measurement settings overview

Pressure compensation

You can configure a pressure compensation value to HMT370EX using either the local display interface or Vaisala Insight PC software.

CAUTION! You must enter the pressure compensation value in order to accurately measure calculated parameters that require pressure data. By default, the pressure compensation value is set as 1013.25 hPa.

Filtering factor

If the measuring environment produces occasional exceptionally high or low readings that need to be averaged out in the output, you can apply a filtering factor to the measurement output. The filtering factor defines the speed at which the latest measurement is integrated into the transmitter's output. For example, setting the filtering factor to 0.500 means that the displayed output is a 50%+50% combination of the previous measurement and the most recent measurement. To show the latest measurement directly in the output, set the filtering factor to 1.000 (no filtering).

HMT370EX has 2 alternative filtering factor options: either a default filtering factor that uses a 13 second moving average (T90), or a custom filtering factor defined by the user.

The filtering factor can be configured using the local display interface or Vaisala Insight PC software.

Calculation coefficients

When required, you can define the molar mass of the ambient gas (default value: 28.965 g/ mol) and oil-specific calculation coefficients. The oil-specific calculation coefficients (selections **Oil A** and **Oil B**) are applicable only for the HMP378F oil probe model.

CAUTION! The molar mass of the ambient gas must be defined when calculating gas dependent humidity parameters.

Note that calculation coefficients (molar mass of the ambient gas and oil-specific calculation coefficients) can only be entered with Vaisala Insight PC software.

For more information on the oil calculation coefficients for HMP378F, see HMP378F calculation model with average oil coefficients (page 117) and HMP378F calculation model with oil-specific coefficients (page 118).

9.2 Configuring pressure compensation

You can configure a pressure compensation value to HMT370EX using either the local display interface or Vaisala Insight PC software.

Note that configuring these settings requires using Insight in **Advanced Mode**.

To set a pressure compensation value:

- 1. If you are using the local display interface:
 - a. Select Menu > Settings > Measurement settings > Pressure.
 - b. Use the Up and Down buttons to enter a value for each digit of the pressure value. Move to the next digit with Select.
 - c. After the final digit, pressing **Select** saves the pressure value.
 - 2. If you are using Insight PC software:
 - a. Connect to Insight PC software: see Connecting to Insight PC software (page 103).
 - b. Select 🙆 > Configure Device > Compensation setpoints.
 - c. Enter the pressure compensation value into the **Pressure** field and select **Save**.

9.3 Configuring filtering factor

	Configure Device In Advanced Mod HMT370					
Compensation setpoints	Filtering on/off Extended filtering on/off	• III(1)(2)			
Calculation coefficients	Filtering factor	0.5000	Ŭ			
Probe Displayed parameters						
Graph Display		(3)				
Analog output 1						
	Save	Close				

Figure 60 Filtering factor configuration in Insight PC software

- 1 Enable **Filtering on/off** to use the default filtering factor.
- 2 Enable **Extended filtering on/off** if you want to enter a custom filtering factor value.
- 3 After enabling the **Extended filtering on/off** selection, enter the custom value into the **Filtering factor** field.

You can apply a filtering factor to the measurement output to average out measurement output over time (for more information, see Environmental compensation and measurement settings overview (page 114)). A default or custom filtering factor can be set using either the local display interface or Vaisala Insight PC software.

To set a filtering factor:

- 1. If you are using the local display interface:
 - a. Select Menu > Settings > Measurement settings > Filtering.
 - b. To enable the default filtering factor (13 second moving average (T90)), set the **Filtering on/off** selection to **ON**.
 - c. If you want to enter a custom filtering factor, set the Extended filtering on/off selection to ON, select Filtering factor and enter the custom value with the Up and Down buttons.
 - d. After the final digit, pressing **Select** saves the pressure value.

- 2. If you are using Insight PC software:
 - a. Connect to Insight PC software: see Connecting to Insight PC software (page 103).

Note that configuring these settings requires using Insight in $\ensuremath{\textbf{Advanced}}$ $\ensuremath{\textbf{Mode}}$.

- b. Select 🙆 > Configure Device > Filtering.
- c. To enable the default filtering factor (13 second moving average (T90)), set the **Filtering on/off** selection to **ON** and select **Save**.
- d. If you want to enter a custom filtering factor, set the Extended filtering on/off selection to ON, enter the custom value into the Filtering factor field, and select Save.

9.4 Configuring calculation coefficients

You can configure a compensation value for the molar mass of the ambient gas and oil-specific coefficients to HMT370EX with Vaisala Insight PC software. The oil-specific coefficients (**Oil A** and **Oil B**) are only applicable for the HMP378F oil measurement probe option.

Note that the default calculation coefficients (see HMP378F calculation model with average oil coefficients (page 117)) are valid for mineral transformer oil.

Note that calculation coefficients can only be configured with Insight PC software. Configuring these settings requires using Insight in **Advanced Mode**.

To enter calculation coefficient values with Insight:

- Connect to Insight PC software: see Connecting to Insight PC software (page 103).
 - 2. Select 👩 > Configure Device > Calculation coefficients.
 - 3. Enter the calculation coefficients (Molar mass of gas, Oil A, or Oil B) as applicable in their respective fields and select Save.

9.4.1 HMP378F calculation model with average oil coefficients

The oil moisture calculation model in HMP378F probes is based on average water solubility behavior of transformer oils. The ppm_w output is calculated as follows:

 $ppm_w = a_w \times 10^{(A/(T+273.15)+B)}$

```
aw water activity
```

A, B coefficients (average or oil specific)

```
T temperature (°C)
```

Typically, moisture in transformer oil measurement with HMP378F has a ppm accuracy of ± 10 % of the reading. If additional accuracy is needed, see HMP378F calculation model with oil-specific coefficients (page 118).

9.4.2 HMP378F calculation model with oil-specific coefficients

For additional accuracy, an oil-specific calculation model can be used in HMP378F for mineral transformer oils. A specific model is always needed for other transformer oil/fluid types. Note that the calculation is only supported for stable dielectric fluids.

For oil-specific coefficients, an oil sample has to be sent to Vaisala for modeling. As a result, the specific coefficients (A and B: see formula in HMP378F calculation model with average oil coefficients (page 117)) for the oil are determined by Vaisala. Using these coefficients increases measurement accuracy.

You can configure the determined coefficients of the oil into use with Insight PC software, or contact Vaisala about setting the coefficients. For configuration instructions, see Configuring calculation coefficients (page 117).

10. Calibration and adjustment

10.1 Calibration and adjustment overview

Calibration Information Factory calibration (III) Factory Calibration					Calib	rate Device				×
Relative humidity Clear Chart Temperature 27.8 96H 22.4 °C 3.3 2.4 °C 3.4 2.2 °C 3.5 2.2 °C 3.6 2.2 °C 3.7 2.2 °C 3.8 2.2 °C 3.9 2.2 °C 1.10 °C 2.	Calibration information Fac	tory calibration	RH adjustment	T adjustment	Adjustment data	RH adjustment data	T adjustment date	a Analo	g output 1 adjustment Analog output 2 adjustment	
13 13 14 12 15 12 16 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 14 12 15 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	Relative humidity	~		Clear Chart		Temperature	22.4 °C	~	Calibrating and Adjusting RH Prepare an RH calibrator to create suitable reference conditions. See device occumentation for calibration	ĺ
347 223 319 223 32 223 33 234 23 235 24 235 25 247 25 247 248 237 249 237 240 237 241 237 241 237 242 237 243 237 244 237 245 237 25	38.2	~~~~		·	~~~~~		~~~_	23.1	requirements and recommendations (for example, the effect of existing adjustments and environmental compensation settings).	
3.3 13.10 1	34.7 32.9 31.1				~~~~		~•	22.5	Inset your device in the eleverage environment of the first calibration point. Wait for the measurement to stabilize fully. The graph shows readings of the last 60 minutes.	
Reference value, point 1 0 0.0044 Messured value, point 1 0 0.0046	29.3 27.6 12:27:45 PM 12:37:4	5 PM	12:47:45 PM	12:57:45 PM	1:07:45 PM	1:17:45 PM	1:27:45	22.1 21.9	 When the measurement has stabilized, click the Reference value, point 1 text box and enter the RH level of calibration point 1. Press ENTER or click exterior take new theorement enters. 	
Messured value, point 1 0 5. If you wast to calibrate in more than one point, repeat the processing of all desired calibration points. Measured temperature, point 1 0 °C Measured temperature, point 1 °C	Reference value, point 1	6			%RH			Ť.	 Check that the measured value(s) for point 1 are automatically inserted. 	
Measured temperature, point 1 0 °C 6. Check the difference between each inference and measured value. Very large differences may be que	Measured value, point 1	0			96RH				 If you want to calibrate in more than one point, repeat the procedure for all desired calibration points. 	
Reference value, point 2 self-terration calibration calibration calibration	Measured temperature, point 2	1 🚯			°C 968H			1	 Check the difference between each reference and measured value. Very large differences may be due to insufficient stabilization time or unsuitable collisation corus. 	
Measured value, point 2 948H adjustment.	Measured value, point 2				%RH				if you want to adjust the device, click Activate adjustment.	

Figure 61 Insight PC software calibration view example

The RH and T measurement of the probe used in the HMT370EX transmitter can be calibrated and adjusted (1-point or 2-point adjustments) using one of the following alternative configuration options:

- Detaching the probe body from the transmitter and connecting the probe to Insight PC software (requires M12 Indigo USB Adapter cable accessory (Vaisala item USB2)).
- Calibrating and adjusting the probe with Insight PC software when the probe is attached to the transmitter (requires M8 USB cable accessory 219690).
- Calibrating and adjusting the probe with the local display interface of the transmitter when the probe is attached to the transmitter.

10.2 Adjusting measurements with Insight

You can carry out RH and T adjustments with Insight PC software in 2 ways:

- Detach the probe body from the transmitter and connect the probe body to Insight.
- Connect the probe body and transmitter to Insight together as one unit using the transmitter service port.

For instructions on connecting to Insight using either option, see Connecting to Insight PC software (page 103).

CAUTION! Using the transmitter service port requires opening the transmitter enclosure. Do not open the transmitter enclosure without reviewing the information in Connecting to Insight PC software (page 103).

- Connect the probe body or transmitter to Insight (see Connecting to Insight PC software (page 103)).
 - 2. Select 🗿 > Calibrate > Yes.
 - 3. Select either RH adjustment or T adjustment
 - 4. Follow the instructions in the Insight interface.
 - 5. After completing the adjustment:
 - a. If you configured the probe body separately, reattach the probe body to the transmitter.
 - b. If you connected to the transmitter service port, remove the cable and see the instructions in Finalizing installation: closing transmitter and attaching grounding (page 90).

10.3 Adjusting measurements with HMT370EX local display interface

The probe connected to HMT370EX can be calibrated and adjusted using the local display interface and a reference device or a calibrator with a known reference concentration. Both RH and T adjustments can be carried out either as 1-point or 2-point adjustments.

To carry out a 1-point or 2-point adjustment with the local display interface:

- 1. Prepare a reference source that you can compare to the measurement of the probe.
 - 2. Select Menu > Calibration and either RH adjustment or T adjustment.

3. Select the number of points you want to adjust and press **Select**.

4. When you select either 1 or 2 points, the transmitter shows a notification about starting the adjustment and information about the task. Place the probe near the reference point.

5. When you are ready to begin the adjustment, select **Start**. To cancel the adjustment and return to the previous menu, select **Back**.

6. After you start the adjustment, the stabilization view is shown. Wait until the display shows a notification about the stabilization being complete.

^{RH %RH ●} 36.70	Waiting for measurement to stabilize
35.0 35.0 35.0	
Back	Next

You can also select **Next** to continue before the notification about stabilization being complete is shown. If the stabilization is not yet ready, a message is shown.

- 7. After the stabilization has completed, continue with Next.
- 8. The display shows the value measured by the probe. Enter the known value of your reference using the **Up** and **Down** buttons, and then select **Next**.

Press and hold the **Up** or **Down** button to change the value faster.

- 9. If you are calibrating multiple points, repeat the steps for the next point.
- 10. After the last point has been adjusted, an information view shows the adjustments that were made. Confirm the adjustments by selecting **Apply**. If you do not want to use the adjustments, select **Discard** to return back without taking the adjustments into use.
- After applying the adjustment, you can view information about the calibration from the Calibration information selection in the Calibration menu.
- 12. If you need to restore factory adjustments, select Reset probe in the Calibration menu.

10.4 Analog output adjustment overview

If the output level of the HMT370EX transmitter's analog channels appears to be incorrect, you can test and adjust the output level using either Insight PC software or the local display interface.

Note that testing and adjusting the analog output requires opening the transmitter enclosure and connecting a multimeter to the test points on the transmitter component board.

CAUTION! The transmitter body enclosure must not be opened in an explosion hazardous area, unless a safe work permit has been issued in accordance with the standard IEC 60079-14. Either remove the transmitter from the hazardous area before opening the enclosure, or ensure that an IEC 60079-14 compliant safe work procedure has been implemented in the hazardous area.

The output parameters of the multimeter must be compatible with the input parameters of the transmitter.

For instructions on connecting the multimeter to the test points and testing the analog output level, see Analog output level test (page 111).

	Output level	Clear Chart		
	• 20			
	20.0			
	17.3			
	12.0			
	9.3			
	6.7			
	4.0 9:42:10 AM 9:52:10 AM 10:02:	10 AM 10:12:10 AM 10:22:	10 AM 10:32:10 AM	10:42:10 AM
	Output status	Adjustment mode		
	Adjustment mode on/off		1	
\bigcirc	0	Output low point		
	Measured value, low point ()	3.800	mA	
$\overline{(3)}$	6	Output high point		
U	Measured value, high point ()	19.850	mA	
	0	Activate adjustment	——(4)	
		Restore factory adjustment	Ŭ	
	Low point offset	0.20	mA	
	High point offset	0.15	mA	
	Calibration date	III		
	Calibration text	15 Apr Aout 1		

10.4.1 Adjusting analog output level with Insight

Figure 63 Analog output level adjustment in Insight PC software

- 1 Enable the adjustment mode with this selection.
- 2 Start sending a low level test output (4 mA) with this selection. Enter the value measured with the multimeter in the **Measured value**, **low point** field.
- 3 Start sending a high level test output (20 mA) with this selection. Enter the value measured with the multimeter in the **Measured value, high point** field.
- 4 After adjusting both low and high points, activate the adjustment with this selection.
- 5 The corrections made to the output level are shown here. Enter information about the calibration and the calibration date.
- > 1. Detach the probe body and open the transmitter cover.
 - 2. Connect a multimeter to the mA testing points located above the output screw terminals on the transmitter component board (see Figure 59 (page 111)).
 - 3. Connect to Insight (see Connecting to Insight PC software (page 103)).

- Select > Calibrate > Yes and then either Analog output 1 adjustment or Analog output 2 adjustment.
- 5. Follow the instructions in the Insight interface to carry out the adjustment.
- 6. Remove the multimeter, close the transmitter cover, and reattach the probe body.

10.4.2 Adjusting analog output level with local display interface

To adjust the output level of analog output channel 1 or 2 with the local display interface:

- 1. Detach the probe body and open the transmitter cover.
 - 2. Connect a multimeter to the mA testing points located above the output screw terminals on the transmitter component board (see Figure 59 (page 111)).
 - 3. Select Menu > Calibration > Adjust outputs, and then select either Analog output 1 or Analog output 2.
 - 4. The display shows information about the analog output level adjustment. Select **Next** to start sending the low level (4 mA) test output from the transmitter analog channel.
 - Verify that the output reading of the multimeter matches 4 mA. If the multimeter reading differs from 4 mA, enter the required change to the transmitter output level with the Up and Down buttons. Select Next after the correction.
 - 6. The transmitter starts to send the high level (20 mA) test output. Verify that the output reading of the multimeter matches 20 mA. If the multimeter reading differs from 20 mA, enter the required change to the transmitter output level. Select **Next** after the correction.
 - 7. In the next view, select **Apply** to take the adjustment into use. If you do not want to save the adjustment, select **Back**.
 - 8. Remove the multimeter, close the transmitter cover, and reattach the probe body.

11. Maintenance

11.1 Overview

Inspect the condition of the transmitter, probe body, and probe head periodically.

The probe (includes probe body and head) can be detached and replaced by the user. The probe head filter (see Figure 5 (page 22)) is also user-replaceable. For other maintenance requirements, contact Vaisala.

CAUTION! The probe can be detached and changed when HMT370EX is powered. Any other live maintenance, including changing the probe head filter, is not allowed.

11.1.1 Technical support

Contact Vaisala technical support at helpdesk@vaisala.com. Provide at least the following supporting information as applicable:

- Product name, model, and serial number
- Software/Firmware version
- Name and location of the installation site
- Name and contact information of a technical person who can provide further information on the problem

For more information, see www.vaisala.com/support.

11.2 Cleaning

You can clean the transmitter, probe, and probe body by wiping with a moist cloth. Standard cleaning agents can be used.

Avoid exposing the transmitter, probe body, or probe to chemicals for unnecessarily long periods of time. Do not immerse them in liquid when cleaning, and wipe chemicals off the surfaces after cleaning.

11.3 Changing probe filter

Replace the probe filter if it is contaminated. New filters are available from Vaisala.

CAUTION! Be careful when changing the filter, since it is easy to break the sensor when the filter is removed.

When replacing the filter, wear clean gloves to avoid depositing dirt or oil on the filter.

Replace the filter as follows:

- > 1. Turn the filter counterclockwise until it is loose.
 - 2. Pull the filter straight out carefully.

CAUTION! Do not damage the sensor.

- 3. Take the new filter, and insert it to the filter thread.
- 4. Tighten the new filter firmly by turning it clockwise (recommended force 5 Nm).

12. Troubleshooting

12.1 Problems and their possible solutions

If you have a problem with using HMT370EX, check the following tables before contacting Vaisala. If the problem you have is not listed in the tables, or if the proposed solution does not fix the problem, contact Vaisala technical support.

Problem: Analog output level appears incorrect				
Possible cause:	Solution:			
Insufficient supply voltage	Ensure that the transmitter is powered correctly. 12 V DC is the minimum voltage in all conditions, measured at the transmitter screw terminals.			
	If the supply voltage is less than 12 V DC, the analog output current can be erroneous.			
	For information on testing and adjusting analog output level, see Analog output level test (page 111) and Analog output adjustment overview (page 122)			

Problem: Transmitter does not power on when power supply is switched on				
Possible cause:	Solution:			
Analog output channel 1 (CH1) not wired	Analog output channel 1 (CH1) must always be wired. The transmitter receives power through the Channel 1 screw terminals, and does not power on if only Channel 2 (CH2) is wired. For wiring instructions, see Wiring (page 86).			
Incorrect supply voltage	Ensure that the transmitter is powered correctly using a supply voltage range of 12 - 28 V DC. 12 V DC is the minimum voltage in all conditions,			
Incorrect polarity	Check that the scrow terminal connections have			
	been made correctly.			
	For wiring instructions, see Wiring (page 86).			

Problem: Humidity measurement options are not available					
Possible cause:	Solution:				
Temperature only probe in use (HMP371 or HMP373)	HMP371 and HMP373 probes can be ordered as temperature only versions that do not have humidity measurement available for use.				
	If you do not know if the HMP371 or HMP373 probe you are using is a T-only version, see instructions on checking the version from the configuration code on the product label: Temperature only probe option (HMP371 and HMP373) (page 63).				

Problem: PIN code prevents opening transmitter local display menus	
Possible cause:	Solution:
PIN code required	Access to transmitter local display menus can be restricted by taking a PIN code into use. For instructions on unlocking the display menus with the PIN code, see Local display PIN code (page 96).

÷.

Problem: Transmitter local display interface has wrong language selected	
Possible cause:	Solution:
Local display configuration mistake	 If the transmitter local display interface has been set to a wrong language, you can access the language selection menu with the following button presses: Press and hold Back to return to the home view. Press Select 3 times to open the Display menu. Press Down once to move to the language selection menu item. Press Select to open the language selections. Move to the correct language with the Up and Down buttons, and start using the language by pressing Select.

Problem: Cannot locate Insight PC software configuration options	
Possible cause:	Solution:

Problem: Cannot locate Insight PC software configuration options		
Wrong user mode	Certain functionalities are only available in Advanced Mode. Change between the Basic Mode and Advanced Mode in the Settings menu. See Figure 56 (page 107) for the location of the Settings menu.	

12.2 Error messages

HMT370EX can display error messages either in Vaisala Insight PC software or in the transmitter's local display.

The messages are categorized according to the severity of the status:

- **Critical errors** are fatal to the operation of the device. It may not be able to respond to communication at all, and will not measure correctly.
- Errors prevent normal operation of the device. Depending on the problem, errors may resolve themselves. For example, a completely wet humidity sensor may cause a humidity measurement error.
- Warnings do not prevent normal operation but may indicate possible problems.
- Status indicates a known state of the device.

Error message	Description	Recommended action
Critical errors		
Firmware checksum mismatch	Firmware is corrupted	Contact Vaisala technical
Factory default settings corrupted	Parameter memory is corrupted	support
Device settings corrupted		
Errors		
Temperature sensor failure	Readings from sensors missing	Inspect probe head and
Humidity sensor failure	or out of range	completely wet, allow it to dry out.
		If the sensors are damaged or missing and the error message(s) stay active, contact Vaisala to have the probe repaired.
Supply voltage out of range	Supply voltage too high or low	Check supply voltage

Warnings		
Calibration has expired	Shown by calibration reminder functionality	Calibrate the probe and update the calibration date information
Unexpected device restart	Device has automatically restarted itself	Check that supply voltage is stable and operating environment is within specification
Status messages		
Calibration is about to expire	Shown by calibration reminder functionality	Calibrate the probe and update the calibration date information

12.3 Restoring factory default settings

You can restore the transmitter and the connected probe back to their factory default settings using Insight software or the local display interface. Doing this will also clear any user adjustment and restore the latest adjustment performed by Vaisala.

Note that restoring the factory default settings of the probe can only be done using Vaisala Insight PC software. Transmitter factory default settings can be restored also with the local display interface.

- 1. To restore **transmitter** factory default settings with the local display interface:
 - a. Select Menu > Maintenance > Restore factory settings and confirm with Restore.
 - 2. To restore transmitter factory default settings with Vaisala Insight PC software:
 - a. Connect the transmitter to Insight. See Connecting to Insight PC software (page 103).
 - b. Select 👩 > Restore Factory Settings > Yes.
 - 3. To restore **probe** factory default settings with Vaisala Insight PC software:
 - a. Connect the probe body, or transmitter and probe body together as one unit, to Insight. See Connecting to Insight PC software (page 103).
 - b. When the probe body is connected to Insight without the transmitter: select > Restore Factory Settings > Yes.
 - c. When the probe body is connected to the transmitter: select > Probe > Restore Factory Settings > Yes.

13. Technical data

13.1 Specifications

Table 38 Measurement performance

Property	Description/value	
Relative humidity		
Measurement range	0 100 %RH	
Accuracy at +23 °C (+73.4 °F) ¹⁾	±0.8 %RH (0 90 %RH)	
Factory calibration uncertainty ²⁾	±0.5 %RH (0 40 %RH)	
	±0.8 %RH (40 95 %RH)	
T ₆₃ response time	15 s	
Sensor options	HUMICAP® R2	
	HUMICAP® 180L2 ³⁾	
Temperature		
Measurement range	–70 +180 °C (–94 +356 °F)	
Accuracy at +23 °C (+73.4 °F)	±0.1 °C (±0.18 °F)	
Factory calibration uncertainty	±0.1 °C (±0.18 °F) at +23 °C (+73.4 °F)	
Sensor	Pt1000 RTD Class F0.1 IEC 60751	

Other available measurement parameters

Dew point temperature, dew point / frost point temperature, absolute humidity, mixing ratio, wetbulb temperature, water concentration, water vapor pressure, water vapor saturation pressure, enthalpy, dew point temperature difference, absolute humidity at NTP, water mass fraction, relative saturation, water activity, water concentration in mineral transformer oil, water concentration in JET A-1 fuel, saturation temperature $^{4)}$

1) Defined against calibration reference. Including non-linearity, hysteresis, and repeatability.

2) Defined as ±2 standard deviation limits. Small variations possible; see calibration certificate.

 The HUMICAP® 180L2 sensor is used in the HMP378F and HMP378H probe variants that are intended for oil and JET A-1 fuel measurements. For specifications, see Table 39 (page 133).

4) For units and abbreviations, see Available measurement parameters (page 12).

Humidity measurement accuracy specified for dew point temperature of max. 95 °C (203 °F).

HUMICAP® 180L2 sensor option

The HUMICAP® 180L2 sensor is used in the HMP378F and HMP378H probe variants that are intended for oil and JET A-1 fuel measurements.

Table 39 HUMICAP® 180L2 measurement performance

Property	Description/Value
Water activity	
Measurement range	0 1 a _w ¹⁾
T ₉₀ response time ²⁾	10 min

Property	Description/Value
Sensor	HUMICAP® 180L2
Accuracy 3)	±0.01 a _w (±1 %RS)
Factory calibration uncertainty	±0.6 %RH (0 40 %RH)
	±1.0 %RH (40 95 %RH)
Temperature	
Measurement range	-40 +180 °C (-40 +356 °F)
Accuracy at +20 °C (+68 °F)	±0.2 °C (0.36 °F)

- 1) 0 ... 1 a_w corresponds to 0 ... 100 %RH
- 2) At +20 °C (+68 °F) in still oil.
- 3) In range 0 ... 0.5 a_w, including non-linearity, hysteresis, and repeatability. See accuracy graph below.

Figure 66 A_w measurement accuracy

Table 40 HMP378F and HMP378H ppm accuracy

Property	Value
JET A-1 fuel ppm accuracy (HMP378H) ¹⁾	±15 % of the reading (typical)
Moisture in transformer oil ppm accuracy (HMP378F) ²⁾	± 10 % of the reading (typical)

1) For more information on HMP378H measurements, see HMP378H probe option for measuring JET A-1 fuel moisture and temperature (page 79)

2) Note: valid for mineral transformer oil. For more information on HMP378F measurements, see HMP378F probe option for measuring oil moisture and temperature (page 79)

Table 41 Operating environment

Property	Description/value
Operating temperature for electronics	-40 +60 °C (-40 +140 °F)
Operating temperature with display	-20 +60 °C (-4 +140 °F)
Storage temperature	-40 +70 °C (-40 +158 °F)
Pressure range	See probe specifications

Table 42 Compliance

Property	Description/value
EMC compatibility	EN 61326-1, industrial environment
Compliance marks	CE, China RoHS, RCM,

Table 43 Inputs and outputs

Property	Description/value
Operating voltage	12 - 28 V
Analog outputs	2 outputs (two-wire, 4 – 20 mA)
	Connection via safety barriers
Typical accuracy of analog outputs at +20 °C	±0.0625 % full scale
Typical temperature dependence of analog outputs	0.005 % / °C (0.005 % / °F) full scale
Transmitter service port connection	USB cable <i>219690</i>
Probe service port connection	USB cable <i>USB2</i>
Display options	Graphical LCD displayModel without display (LED indicator)

Table 44 Mechanical specifications

Property	Description/value
Connections	Screw terminals, 0.33 2.0 mm ² wires (AWG 14-22)
Cable glands	M20 x 1.5
Conduit fitting	NPT 1/2" and M16
Housing material	EN AW-6082

Property	Description/value
Housing weight	Transmitter with LCD display: 1500 g (3.3 lb)
	Transmitter with LED indicator: 1520 g (3.35 lb)
	HMP371 fixed probe: 320 g (0.7 lb)
IP rating	IP66: Dust-tight. Protected from powerful water jets from any direction.
NEMA rating	NEMA 4: Dust-tight. Protected from powerful water jets from any direction.

13.2 HMP371 specifications

Table 45 HMP371 for wall mounting

Property	Description/value
Temperature range	-40 +60 °C (-40 +140 °F)
Probe diameter	12 mm (0.47 in)

The HMP371 fixed probe option has a probe head that attaches directly on the probe body, making it suitable for wall mounting applications.

Figure 68 Dimensions in mm (inches)

13.3 HMP373 specifications

Table 46 HMP373 for confined spaces

Property	Description/value	
Temperature range with teflon cable	-40 +120 °C (-40 +248 °F)	
Temperature range with rubber cable	-40 +80 °C (-40 +176 °F)	
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)	
Probe diameter	12 mm (0.47 in)	
Installation		
Duct installation kit	210697	
Cable gland M20x1.5 with splitting seal	HMP247CG	
Swagelok for 12mm probe, 1/2" NPT thread	SWG12NPT12	

Figure 69 Dimensions in mm (inches)

13.4 HMP374 specifications

Table 47 HMP374 for high pressure

Property	Description/value
Temperature range	-70 +180 °C (-94 +356 °F)
Pressure range	0 10 MPa
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)
Probe diameter	12 mm (0.47 in)
Fitting body M22x1.5	17223
Fitting body NPT1/2	17225

Figure 70 Dimensions in mm (inches)

13.5 HMP375 specifications

Table 48HMP375 for high temperature

Property	Description/value
Temperature range	-70 +180 °C (-94 +356 °F)
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)
Probe diameter	13.5 mm (0.53 in)
Installation	
Mounting flange	210696
Cable gland M20x1.5 with splitting seal	HMP247CG

drilling 16...22 (0.63...0.87)

Figure 71 HMP375 probe and stainless steel installation flange. Dimensions in mm (inches).

13.6 HMP377 specifications

Table 49 HMP377 for high humidities

Property	Description/value
Temperature range	-70 +180 °C (-94 +356 °F)
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)
Probe diameter	12 mm (0.47 in)
Installation	
Duct installation kit	210697
Cable gland M20x1.5 with splitting seal	HMP247CG
Swagelok for 12 mm probe, 3/8" ISO thread	SWG12ISO38
Swagelok for 12 mm probe, 1/2" NPT thread	SWG12NPT12

Figure 72 Dimensions in mm (inches)

13.7 HMP378 specifications

Table 50 HMP378 for pressurized pipelines

Property	Description/value
Temperature range	-70 +180 °C (-94 +356 °F)
Pressure range	0 4 MPa
Probe cable length	2, 5 or 10 meters (6 ft 7 in, 16 ft 5 in, 32 ft 10 in)
Probe diameter	13.5 mm/12 mm (0.53 in/0.47 in)
Available probe lengths	226 mm/448 mm (8.90 in/17.6 in)
Installation	
Fitting body ISO1/2 solid structure	DRW212076SP
Fitting body NPT1/2 solid structure	NPTFITBODASP
Ball valve ISO 1/2 with welding joint	BALLVALVE-1

Length for standard/optional probes

Figure 73 Dimensions in mm (inches)

13.8 Spare parts and accessories

Information on spare parts, accessories, and calibration products is available online at www.vaisala.com and store.vaisala.com.

Table 51 Accessory availability

Accessory	Part number	Models
Probe accessories		
M12 Indigo USB Adapter cable accessory for connecting HMT370EX probes to Insight	USB2	All models
 Ball valve ISO 1/2 with welding joint Pressure range at +20 °C (+68 °F) 0 20 bar (0 290 psia) (during installation max. 10 bar (145 psia) 	BALLVALVE-1	HMP378
Duct installation kit	210697	HMP373, HMP377
Mounting flange	210696	HMP375
Cable gland M20 x 1.5 with split seal	HMP247CG	HMP373, HMP375, HMP377
Fitting body M22 x 1.5	17223SP	HMP374
Fitting body NPT1/2	17225SP	HMP374
Fitting body ISO1/2 solid structure	DRW212076SP	HMP378
Fitting body NPT1/2 solid structure	212810SP	HMP378

Accessory	Part number	Models	
Swagelok fitting for 12 mm probe, 1/2" NPT thread	SWG12NPT12	HMP377	
Swagelok fitting for 12 mm probe, 3/8″ ISO thread	SWG12ISO38	HMP377	
Swagelok fitting for 12 mm probe, 1/2" ISO thread	SWG12ISO12	HMP377	
Thread adapter ISO 1/2" to NPT 1/2"	210662SP	All models	
Manual press	HM36854SP	HMP378/F/H	
Cable lead-through accessories			
Cable gland M20 x 1.5 for Ø 5 11 mm cable	265207SP	All models	
Cable gland M20 x 1.5 for Ø 10 14 mm cable	265208SP	All models	
Conduit fitting M16	265243SP	All models	
Conduit fitting NPT1/2"	265240SP	All models	
Dummy plug (Ex, 2 pcs)	254931SP	All models	
Transmitter accessories			
HMT360 retrofit mounting plate	DRW253246SP	All models	
Turbine mounting kit	НМТ300ТМК	All models	
Outdoor installation kit (weather shield)	215109	All models	
USB service cable for transmitter	219690	All models	
Zener barrier for 1 channel (for 2 channels, order 2 pcs)	210664	All models	
Galvanic isolator for 1 channel	212483	All models	
Galvanic barrier for 1 channel	MTL5541	All models	
Galvanic barrier for 2 channels (1 pc double channel)	MTL5544	All models	
Calibration adapter for HMK15	211302	HMP371, HMP373, HMP374, HMP377	
13.9 Recycling instructions

These recycling instructions guide you on the end-of-life treatment of this Vaisala product. As waste regulations and infrastructure vary in each country, these instructions only indicate the different components to be separated and common ways to handle them. Always follow local requirements when disposing of the product. Vaisala encourages to use the best available recycling practices to minimize related environmental impacts.

Vaisala is committed to meeting the requirements of the EU Waste Electrical and Electronic Equipment (WEEE) Directive. This directive aims to minimize the impact of electrical and electronic goods on the environment, by increasing reuse and recycling, and reducing the amount of WEEE going to landfill. This symbol indicates that the product should be collected separately from other waste streams and treated appropriately.

HMT370EX series transmitters and probes have metal and plastic parts that can be removed for recycling. The gasket of the transmitter body is made of silicone. With the transmitter model with no display, the transmitter body can be recycled as metal after removing the detachable electronics. With the LCD display model, the transmitter body must be disposed of as electrical and electronic waste.

Electrical and electronic waste Silicone

Recycling instructions for transmitters with no display

Figure 74 Recyclable and non-recyclable parts in transmitters with no display

• Probe body and probe head: dispose of as electrical and electronic waste.

- Transmitter component board, flat cable, and inside cover: remove metal screws and dispose of as electrical and electronic waste.
- Transmitter body and screws: recycle as metal.
- Service port and lead-through plugs: recycle as plastic.
- Transmitter cover gasket: dispose of or recycle as silicone according to local regulations.

Figure 75 Recyclable and non-recyclable parts in transmitters with no display after disposing of electronics and probe

The transmitter body and screws can be recycled as metal after the electronics have been removed. Remove the wall pads on the bottom of the transmitter before recycling.

Recycling instructions for transmitters with display

Figure 76 Recyclable and non-recyclable parts in transmitters with display

- Probe body and probe head: dispose of as electrical and electronic waste.
- Transmitter body, component board, flat cable, and inside cover: remove metal screws and dispose of as electrical and electronic waste.
- Service port and lead-through plugs: recycle as plastic.
- Transmitter cover gasket: dispose of or recycle as silicone according to local regulations.

Figure 77 Recyclable and non-recyclable parts in transmitters with display after disposing of electrical and electronic waste

Maintenance and calibration services

Vaisala offers comprehensive customer care throughout the life cycle of our measurement instruments and systems. Our factory services are provided worldwide with fast deliveries. For more information, see www.vaisala.com/ calibration.

- Vaisala Online Store at store.vaisala.com is available for most countries. You
 can browse the offering by product model and order the right accessories,
 spare parts, or maintenance and calibration services.
- To contact your local maintenance and calibration expert, see www.vaisala.com/contactus.

Warranty

For standard warranty terms and conditions, see www.vaisala.com/warranty.

Please observe that any such warranty may not be valid in case of damage due to normal wear and tear, exceptional operating conditions, negligent handling or installation, or unauthorized modifications. Please see the applicable supply contract or Conditions of Sale for details of the warranty for each product.

Technical support

Contact Vaisala technical support at helpdesk@vaisala.com. Provide at least the following supporting information as applicable:

- Product name, model, and serial number
- Software/Firmware version
- Name and location of the installation site
- Name and contact information of a technical person who can provide further information on the problem

For more information, see www.vaisala.com/support.

Recycling

Recycle all applicable material.

Follow the statutory regulations for disposing of the product and packaging.

www.vaisala.com